
The Journal of Systems and Software 122 (2016) 553–563 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

SAND: A fault-tolerant streaming architecture for network 

traffic analytics 

� 

Qin Liu 

a , John C.S. Lui a , ∗, Cheng He 

b , Lujia Pan 

b , Wei Fan 

b , Yunlong Shi b 

a The Chinese University of Hong Kong, Hong Kong 
b Huawei Noah’s Ark Lab, Hong Kong 

a r t i c l e i n f o 

Article history: 

Received 14 October 2014 

Revised 28 March 2015 

Accepted 31 July 2015 

Available online 10 August 2015 

Keywords: 

Stream processing 

Network analytics 

Fault-tolerance 

a b s t r a c t 

Many long-running network analytics applications (e.g., flow size estimation and heavy traffic detection) 

impose a high-throughput and high reliability requirements on stream processing systems. However, previ- 

ous stream processing systems which are designed for higher layer applications cannot sustain high-speed 

traffic at the core router level. Furthermore, due to the nondeterministic nature of message passing among 

workers, the fault-tolerant schemes of previous streaming architectures based on the continuous operator 

model cannot provide strong consistency which is essential for network analytics. In this paper, we present 

the design and implementation of SAND, a fault-tolerant distributed stream processing system for network 

analytics. SAND is designed to operate under high-speed network traffic, and it uses a novel checkpointing 

protocol which can perform failure recovery based on upstream backup and checkpointing. We prove our 

fault-tolerant scheme provides strong consistency even under multiple node failure. We implement several 

real-world network analytics applications on SAND, including heavy traffic hitter detection as well as policy 

and charging control for cellular networks, and we evaluate their performance using network traffic captured 

from commercial cellular core networks. We demonstrate that SAND can sustain high-speed network traffic 

and that our fault-tolerant scheme is efficient. 

© 2015 Elsevier Inc. All rights reserved. 
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. Introduction 

Stream processing systems are essential for real-time network

nalytics applications. For instance, telecommunication companies

ish to classify network traffic in real-time so that they can perform

roper resource allocation on different applications; network admin-

strators wish to detect anomalies in core network traffic as soon as

ossible so that these traffics can be filtered or rate limited. To en-

ble these real-time network analytics applications, we need a high

erformance stream processing system that can sustain high-speed

etwork traffic. 

However, designing such a system is challenging, because network

nalytics applications are usually long-running tasks and the stream
� An earlier version of this work was presented at the 44th Annual IEEE/IFIP Interna- 

ional Conference on Dependable Systems and Networks (DSN 2014) ( Liu et al., 2014 ). 

his extended version presents added materials which include the design and imple- 

entation of two new complex streaming applications over SAND (see Section 5 ), and 

he evaluation of a new application, namely, SmartPCC (see Section 6 ) to demonstrate 

he utility of SAND. 
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echeng@huawei.com (C. He), panlujia@huawei.com (L. Pan), David.Fanwei@ 

uawei.com (W. Fan), shiyunlong@huawei.com (Y. Shi). 
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rocessing systems must provide high availability for continuous pro-

essing. For instance, mobile operators need to have a scalable and

eliable real-time policy and charging control (PCC) system ( Finnie,

011 ) on the top of stream processing systems. Leveraging PCC sys-

ems, operators can provide personalized service plans tailored for

ubscribers’ behaviors, for example, to assist on-the-fly purchasing

ecisions of various products. Therefore, to provide uninterrupted

peration for PCC systems or other critical applications against fail-

res like machine crash, fault-tolerance is a key feature we need to

ave in distributed stream processing systems. In addition, many cus-

omers want strong consistency after failure recovery: for critical task

ike charging service fees, it is necessary to provide correct results

ven when some machine crashes. 

Although there are a number of stream processing systems avail-

ble 1 ( Neumeyer et al., 2010, Huici et al., 2012; Zaharia et al., 2013 ),

hey are not really designed to support network analytics applications

nd cannot sustain high-speed network traffic at the core router level.

ost stream processing systems including Storm 

1 , S4 ( Neumeyer

t al., 2010 ), and MillWheel ( Akidau and Balikov, 2013 ) are built on a

ontinuous operator model , where streaming computations are carried

n a series of stateful operators. Specifically, previous fault-tolerant
1 Storm: distributed & fault-tolerant realtime computation, http://storm.apache.org/ 

http://dx.doi.org/10.1016/j.jss.2015.07.049
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Fig. 1. AppTracker : a DPI software using the COM. 
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approaches on the continuous operator model such as replication

and upstream backup have their limitations. In replication, the sys-

tem runs several identical copies of jobs on different machines which

demands high resource investment. In upstream backup, each node

needs to buffer its output data for a long time and suffers from high

recovery time. Also, for both approaches, it is difficult to guarantee

the consistency of results after failure recovery. 

Contributions: In this paper, we present the design and imple-

mentation of a stream processing system called SAND which tar-

gets for real-time network analytics at the core router level. We

also propose and implement a novel fault-tolerant scheme based

on “upstream backup ” and “checkpointing ” over SAND. Our check-

pointing protocol can be adapted to all stream processing systems

based on the continuous operator model and guarantee strong con-

sistency after failure recovery. To illustrate the utility of SAND, we

present several network analytics applications which need real-

time processing and demonstrate how to implement these ap-

plications on the top of SAND. Finally, we carry out extensive

evaluation to show the performance of SAND over other stream

processing systems. We experimentally evaluate the fault-tolerant

scheme under different failure patterns. We also evaluate the sus-

tained throughput of several real-world network analytics applica-

tions using real network traffic collected from commercial cellular

networks. 

The rest of the paper is organized as follows. Section 2 reviews

previous stream processing systems, existing fault-tolerant schemes,

and their limitations. Section 3 presents the design of SAND. Our

fault-tolerant scheme is described in Section 4 . We port several real

network analytics applications to SAND in Section 5 . We present an

evaluation of SAND in Section 6 and conclude in Section 7 . 

2. Background and related work 

2.1. Motivation 

There are many network analytics which need high perfor-

mance, real-time, and fault-tolerant stream processing systems. One

representative network analytics application is deep packet inspec-

tion (DPI), which can classify network traffic packets into different

application-level protocols. Telecommunication companies are often

interested in the distribution of applications in the network traf-

fic because administrators can do proper resource allocation and

bandwidth management. Previously, high performance DPI systems

were implemented on the Hadoop platform ( Shvachko et al., 2010 ).

Hadoop is a batch processing system , so results from the system are

non-real-time and it suffered from high processing latency. There

is an urgent need to perform DPI on a real-time stream process-

ing system so network operators can perform real-time resource

management. 

Many network analytics applications like DPI or network anomaly

detection have several common characteristics. Firstly, they need to

be executed at the core router level, so the stream processing system

needs to sustain and operate at a high-throughput setting (i.e., at Gb/s

range). Secondly, telecommunication administrators wish to process

these applications in real-time and with low latency . This imposes a

huge computational constraint on the streaming engine. Lastly, these

applications run for a long duration, and this imposes a high reliabil-

ity and fault-tolerant requirement on the stream processing systems.

In case there is a component failure, the stream processing system

needs to recover the component without compromising the integrity

of the processing results. 

2.2. Model of stream processing 

To realize a high-throughput, highly fault-tolerant stream pro-

cessing system, researchers have proposed to use the continuous
perator model (COM) 1 ( Neumeyer et al., 2010 ). Under the COM

ramework, streaming computation is carried by a set of long-lived

perators. Each operator processes input data events and produces

utput data events that can be further processed by the next opera-

ors. 

To illustrate the concept of COM, let us consider AppTracker ,
 DPI software that we develop on the top of our stream processing

ystem. Fig. 1 depicts a software abstraction of AppTracker . It is
omposed of four different types of continuous operators: (1) Spout ,

2) GPRS-Decoder , (3) DPI-Engine , and (4) Tracker . The Spout reads

aw GPRS network traffic packets from an external source and assigns

he traffic to different GPRS-Decoders. The GPRS-Decoder decodes

PRS packets, extracts the IP packets and forwards to the DPI-Engine.

he DPI-Engine performs application classification on the input data.

he Tracker summarizes the distribution of different applications

n the network traffic. 

Under the COM framework, an operator can be stateful or state-

ess . A stateful operator has mutable state that may be changed when

t receives an input event, while its output streams depend on the

nternal state and input streams. For a stateless operator, the out-

ut streams do not depend on the internal state. In AppTracker ,
he Spout and GPRS-Decoders are stateless operators, while the DPI-

ngines and Tracker are stateful operators. For each input network

acket, the GPRS-Decoder decodes the GPRS headers and extracts the

P packets. Computation is done on a per packet basis so one does not

eed to use “state ” to keep track of the computation. On the other

and, DPI needs to be carried out on a flow-level basis, so the DPI-

ngine needs to aggregate IP packets into flows, then perform DPI

peration on each flow. Hence the DPI-Engine is a stateful operator

nd its internal state includes a flow table that stores active flows. 

.3. Existing fault-tolerant schemes 

Fault-tolerance in stream processing systems is an important

echnical challenge that needs to be addressed. In the course of

tream processing, it is possible that one or more of these continu-

us operators may fail. If it is a stateful operator, then when this op-

rator recovers, it is important to restore the internal state and con-

inue with the streaming computation. However, the internal state of

ach operator potentially depends on the history of the input traf-

c or states of previous operators, so these internal states cannot be

asily recreated by re-processing a small portion of the input stream.

Let us review several fault-tolerant schemes used by existing

tream processing systems. The first approach is via replication (or

ctive standby) ( Hwang et al., 2005 ). Under this scheme, the stream

rocessing systems use redundancy for execution. For each opera-

or, it has a primary operator and one or more backup operators

or replica ). Input data streams are sent to all operators. Consider

ppTracker in Fig. 1 , we have primary operators (on the top) and

he replica operators (at the bottom). Replication is an expensive

ault-tolerant scheme since it at least doubles the resource require-

ent. Moreover, the replication scheme requires a costly synchroniza-

ion ( Balazinska et al., 2008; Shah et al., 2004 ). As shown in Fig. 1 , DPI-

ngine must synchronize with its replica to ensure that they see input
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vents in the same order (we will elaborate why the order of events is

mportant). 

Another approach to providing fault-tolerance is via upstream

ackup ( Hwang et al., 2005 ). Under this scheme, each operator re-

ains a copy of the data events it sent to a downstream operator.

he data will only be purged when an acknowledgement is received

rom the downstream operator indicating that the data events have

een processed. For some operators whose internal states only de-

end on a subset of input streams, we can recover their states by re-

laying the upstream operators’ recent output data events. However,

his is not applicable to stateful operators. For example, for the DPI-

ngine operator, most input data events affect the operator’s internal

tate. Therefore, upstream backup requires large buffer resources and

he recovery delay can be significant under a high input traffic rate

etting. 

To improve the performance of upstream backup, checkpointing

echnique was introduced ( Fernandez et al., 2013; Gu et al., 2009 ).

nder this scheme, each operator periodically checkpoints its inter-

al state. During recovery, the failed operator resumes from the most

ecent checkpoint, and only needs to re-process the data events af-

er the last checkpoint. The advantage of this scheme is in reducing

he recovery delay. However, the order of data events from differ-

nt input streams is nondeterministic (because of the interleaving of

ata events within the network). Also, the inter-arrival times of data

vents are nondeterministic because of processing delays. For opera-

ors whose computations depend on the order and inter-arrival times

f input, this nondeterminism makes it challenging to provide strong

onsistency ( Hwang et al., 2005 ) after recovery. 

.4. Challenge due to nondeterminism 

Let us illustrate why the above nondeterminism makes fault-

olerance difficult. Consider a streaming application as shown in

ig. 2 . Suppose the internal state of operator f is the sum of input data

vents. When operator f receives an input data event, it updates the

um. If the sum is larger than 10, it emits an output data event with

he current sum to the next operator d . Suppose, at checkpoint c , op-

rator f checkpoints its internal state s c = 5 (which means the sum

s 5). After checkpoint c , operator f receives data events α1 = 2 , β1 =
 , α2 = 6 , β2 = 2 in order from operator a and b . These data events

rigger two output events from operator f : γ1 = 14 , γ2 = 16 . Then op-

rator f fails. To recover operator f , we roll it back to state s c and let

perator a and b to replay data events α1 , α2 , β1 , and β2 . Because of

he nondeterministic nature of stream processing, the arrival order of

eplayed data events may be different from the order before failure.

uppose the replayed data events from operator a and b arrive at the

perator f in the order of α1 , β1 , β2 , α2 . Then operator f emits a new

utput event γ ′ 
1 = 16 to operator d . We can see that the output of op-

rator f depends on the arrival order of input events. Note that γ 1 , γ 2 

nd γ ′ 
1 

are duplicate events triggered by the same input streams in

ifferent orders. The order and the number of such duplicate events

re nondeterministic in stream processing systems. These duplicate

vents can cause inconsistency on the state of operator d after recov-

ry, and cannot be handled by simply adding sequence numbers. 

So, for those applications that require strong consistency, the up-

tream backup scheme with checkpointing cannot handle such du-
α1
α2

β1
β2

γ1 γ2

γ′
1

f

a

b

d
α1, β1, β2, α2 −→ γ′

1

α1, β1, α2, β2 −→ γ1, γ2

Fig. 2. For operator f , output events depend on the order of input events. 
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licate events during recovery due to the above nondeterminism.

or the similar reason, the replication scheme needs synchroniza-

ion protocols to synchronize the order of input between the primary

perators and the replicas, otherwise the primary operators and the

eplicas may produce different results. 

The above discussion indicates that previous stream processing

ystems are not appropriate for high-speed network analytics. Firstly,

etwork analytics applications require the stream processing system

e sustainable at a high traffic rate. Secondly, the semantics of net-

ork analytics requires us to have strong consistency. To sustain high-

hroughput stream processing and provide strong consistency, we de-

ign a stream processing system called SAND . Let us discuss SAND’s

rchitecture and fault-tolerant scheme in the following sections. 

.5. Related work 

There have been extensive studies on distributed streaming archi-

ectures for real-time processing, and we highlight some examples

ere. Like our system, S4 ( Neumeyer et al., 2010 ), Storm 

1 , Flume 2 and

igon 

3 are based on the COM framework. They treat streams as a se-

uence of events and they are handled by different processing oper-

tors. These systems ensure reliable message delivery but they can-

ot provide strong consistency after recovery. Several fault-tolerant

chemes on the COM framework have been described in the previous

ection. 

Fernandez et al. (2013) assign each data event a key and define

he processing state of an operator as a set of key/value pairs. This

djustment on the COM framework allows a stream processing sys-

em to partition the state or checkpoint of an operator and scale it

ut or recover it in a distributed manner. This is orthogonal to our ap-

roach described in Section 4 and could be used to reduce recovery

imes. However, their system only considers the case with one op-

rator failure. Since each operator stores checkpointed state on one

f its upstream operators, their system cannot recover if two consec-

tive operators fail. In contrast, our system can recover even under

ultiple node failure. 

There are also efforts to perform streaming computation by

ipelining batch computations. MapReduce Online ( Condie and

ears, 2010 ) supports continuous processing within and across dif-

erent MapReduce jobs. Spark Streaming ( Zaharia et al., 2013 ) adds

upport for stream processing to Spark ( Zaharia et al., 2012 ), an

n-memory cluster computing system. Spark Streaming decomposes

omputing jobs in small timescales and stores computing state in a

ault-tolerant distributed memory abstraction called Resilient Dis-

ributed Datasets (RDDs). RDDs are checkpointed to disks period-

cally and can be recovered in parallel, therefore Spark Streaming

rovides reliable fault-tolerance. Trident ( Marz, 2014 ) provides a

unctional API similar to Spark Streaming, while it stores state in a

eplicated database to provide fault-tolerance, which is more expan-

ive than RDDs. Both Spark Streaming and Trident use the micro-

atching model which allows them to treat a stream as a sequence

f small batches. While the micro-batching model makes the fault-

olerance easier, both systems suffer from higher latency as compared

o other systems that are based on the continuous operator model

 Zaharia et al., 2013 ). Moreover, both systems only support certain

re-defined operators (e.g., map, join, and aggregate) and are not as

xtensive and scalable as our system. 

Note that above architectures are designed for general purposes.

n the context of network traffic processing, cSAMP ( Sekar et al.,

008 ) distributes processing across routers and uses a centralized

ode for global optimization. RouteBricks ( Dobrescu et al., 2009 ) em-

loys a high-speed extensible software-based router by distributing
2 Apache Flume. http://flume.apache.org . 
3 Tigon – 100% open source low latency, high-throughput streaming technology, 

ttp://tigon.io/ . 

http://flume.apache.org
http://tigon.io/
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Fig. 3. SAND architecture. 
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traffic across multiple multi-core machines. Gigascope ( Cranor et al.,

2003 ) is a stream processing system for network monitoring that

provides a programmable architecture via SQL-like query language.

Blockmon ( Huici et al., 2012 ) schedules CPUs and communication

channels to achieve high-performance message passing. Our work

complements the above studies by also providing strong consistency

for critical network analytics applications like real-time charging. 

3. System design of SAND 

In designing SAND, we set two design goals. First, it has to sus-

tain high input traffic rates (i.e., at Gb/s range). Our major target ap-

plications are network analytics (e.g., DPI and traffic anomaly detec-

tion) within the core networks. Note that most open source stream

processing systems, S4 ( Neumeyer et al., 2010 ) and Storm 

1 , are im-

plemented on Java Virtual Machine (JVM), so it is inefficient to de-

velop and execute non-JVM operators on these two systems. Fur-

thermore, Storm has high processing overheads and it cannot sustain

high-speed network traffic (please refer to Section 6 ), while the per-

formance of S4 is even much lower than Storm ( Zaharia et al., 2013 ).

SAND is optimized for high-throughput processing. It is implemented

in C++ so it can use existing high performance libraries for network

analytics. Our second design goal is to be fault-tolerant. We use up-

stream backup and checkpointing techniques , and complement these

techniques with a novel checkpointing coordination protocol to pro-

vide strong consistency. 

SAND uses the continuous operator model for two reasons: (1) in

network analytics, packets are processed one by one which is simi-

lar to data events in the continuous operator model, so it is natural

for users to develop new network analytics applications under the

continuous operator model; (2) the micro-batching model ( Zaharia

et al., 2013 ) suffers higher latency which is undesirable in many time

critical applications like intrusion detection. Fig. 3 depicts the archi-

tecture of SAND. A SAND cluster uses the single-master distributed

system design and it has two types of nodes: a coordinator node and
ultiple worker nodes. Each worker can be viewed as a continuous

perator described in Section 2 . The input to a worker is an input

tream, which represents either a sequence of events of data source

e.g., network traffic), or a sequence of events generated by other

orkers. We name a worker that receives an input stream from an

xternal source as a source worker . Otherwise, they are called the in-

ernal workers . 

The coordinator is responsible for managing workers and detect-

ng worker failures. It relays control messages like starting a check-

oint and acknowledgement of a checkpoint among workers. All

ommunication between the coordinator and the workers is done

hrough a Zookeeper ( Hunt et al., 2010 ) cluster, which provides reli-

ble distributed coordination service. Additionally, the coordinator is

tateless; all states are kept in Zookeeper. So if the coordinator fails,

o workers will be affected. Coordinator simply restarts and recon-

ects to the Zookeeper, which is a replicated service based on a quo-

um algorithm, so we do not need to consider its failure handling. 

Each worker module is responsible for processing a portion of

treams. It contains three types of processes: (a) dispatcher , (b) an-

lyzer , and (c) collector . The dispatcher receives incoming streams,

hich can be originated from a data source (e.g., network traffic)

r from other workers. The dispatcher decodes the streams and dis-

ributes them to one or multiple analyzers . Users have the flexi-

ility to decide how to distribute the streams, i.e., they can use

uilt-in load-balancing algorithms (e.g., stateless hashing or join the

hortest queue) in SAND, or they can extend the load-balancing li-

rary. To utilize the multi-core architecture of modern machines, we

an run multiple analyzer processes in parallel. Each analyzer is an

pplication dependent analysis process which works on its assigned

treams and produces intermediate results. The collector aggregates

ntermediate results from all analyzers to produce the final results,

nd forwards the results to the next-hop workers for further pro-

essing. If a worker has next-hop workers, the collector records the

utput data events in its output buffer of each next-hop worker. This

llows the worker to replay its output data events in case there is
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Fig. 4. Technology stack of SAND. 
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e  
 failure recovery. In SAND, whenever next-hop workers have per-

ormed a checkpointing operation, the system will purge some of the

ata from its output buffers. We will describe the output data purging

peration in the next section. 

Usually, the analyzer runs CPU-intensive tasks, and has the most

omputational load compared to that of the dispatcher or the collec-

or. In SAND, each worker node runs exactly one dispatcher and one

ollector, but it can potentially run multiple analyzers processes. In

ase the input stream is of high traffic rate (such as in the core router

raffic with Gb/s rate), the worker can instantiate more analyzer pro-

esses to sustain the high processing requirement. 

To manage the processing power of a worker, each worker runs a

ontainer daemon that spawns or stops the dispatcher, analyzer, and

ollector processes in the worker. The container also serves as a com-

unication interface between the worker and the coordinator. Thus,

he coordinator can manage the resources of each worker through the

orker’s container. For instance, the coordinator can inform a con-

ainer to create more analyzers to increase the processing power. 

To provide high-speed communications between the dispatcher

nd each analyzer, and those between each analyzer and the col-

ector, SAND uses lock-free ring buffers ( Lamport, 1977 ) to avoid lock

ontention which may degrade system performance. Workers com-

unicate via ZeroMQ 

4 , which is a messaging library optimized for

igh-throughput communication. We use ZeroMQ sockets instead of

CP sockets because (1) it provides more reliable connections on top

f raw TCP sockets; (2) it batches small messages into a single unit to

void expensive system calls; (3) it queues messages in a separate I/O

hread, so sending and receiving operations are asynchronous. 

It is important for us to emphasize that we only define the compo-

ents of a worker as an abstraction . Developers can easily extend the

etailed functionalities of the dispatcher, analyzer, and collector pro-

esses, as well as define the formats of the streams being processed

nd the messages exchanged among the workers and the coordinator.

To illustrate the mapping, consider AppTracker in Fig. 1 . Each

perator can be directly mapped to a worker in a SAND cluster. Since

PRS decoding is a CPU-intensive task, GPRS-Decoder can have mul-

iple analyzers which means it can use multiple cores in a single ma-

hine. If decoding demands more CPU resources, we can start mul-

iple GPRS-Decoders in multiple machines. Workers which are not

PU intensive (e.g., Spout and Tracker) can be placed on the same

achine. 

In Fig. 4 , we summarize the technologies and libraries used in

AND. As described previously, we connect all workers using ZeroMQ
4 Distributed Computing made Simple – zeromq, http://zeromq.org/ . h
nd the coordinator manages each worker through a Zookeeper clus-

er. For our fault-tolerant scheme, the workers need to store check-

oints to a distributed file system, HDFS ( Shvachko et al., 2010 ). We

ill elaborate this in the next section. 

Users can build various network analytics applications on top of

AND. Currently, we also provide some basic workers including Spout ,

hich reads network traffic packets from a network interface or a file,

nd Decoder which decodes TCP/IP packets. The APIs of SAND are sim-

le and flexible. Usually, to build a worker, users only need to im-

lement the process() method of the analyzer and define state

ariables in the analyzer. Then, process() is invoked for each in-

oming data event of the worker. In process() , users can handle

ach data event, modify internal state, and use the emit() method

o send new data events to other workers. To build a new worker,

sers can also employ existing C++ libraries in the analyzer. For exam-

le, in the Decoder, we perform IP defragmentation and TCP stream

ssembly using libnids 5 ; to implement a worker that performs DPI,

e can use an open source library like nDPI 6 . 

. Fault-tolerance and checkpoint coordination 

SAND adopts a combination of upstream backup and checkpoint-

ng to achieve a balance between run-time overhead and recov-

ry delay. Furthermore, we have designed and implemented a novel

heckpointing protocol to provide strong consistency ( Section 4.1 )

nd failure recovery ( Section 4.2 ). Finally, we prove its correctness

 Section 4.3 ) and discuss its limitations ( Section 4.4 ). 

For ease of presentation, we assume that the dispatcher and col-

ector in each worker are stateless, and we only need to check-

oint the state of analyzers. SAND does not need a priori knowledge

f the internal state of an analyzer. Instead, it uses the two user-

efined functions export and import in analyzers to complete a

trong consistent checkpointing. All checkpoint data are written to

DFS ( Shvachko et al., 2010 ), which performs replication for data re-

iability. The implementation of checkpointing uses the copy-on-write

emantics of the fork system call. In fork , it creates a new pro-

ess by duplicating the calling process. When a worker starts a check-

oint, each analyzer process calls fork , and creates one child process

hich is an exact copy of parent. The parent analyzer then resumes

ith the normal processing. The child analyzer writes the internal

tate using the export function to HDFS, then sends an acknowl-

dgement to the coordinator, and finally exits. Note that the parent

rocess does not have to wait for checkpointing to complete. During

ecovery, analyzer processes call the import function to fetch the

heckpointed data from HDFS. In what follows, we formally describe

he checkpointing protocol. 

.1. Checkpointing protocol 

To perform the real-time streaming computation, we assume that

ll workers in a SAND cluster can be mapped to a directed acyclic

raph. Let W be the set of all workers. For each worker w in W , we

efine U w 

as the set of upstream workers of w , and each workers in U w 

enerates data events as direct input to w . We define D w 

as a set of

ownstream workers of w , and the input of workers in D w 

is derived

rom w . Note that D w 

includes the next-hop workers of w , as their

ext-hop workers, and so on. Let V be a set of workers. We define

 V = ∪ w ∈ V U w 

and D V = ∪ w ∈ V D w 

. To illustrate the notation, consider

n example in Fig. 5 , for the worker e , we have U e = { c} and D e =
 g, h } . If V = { c, e } , then U V = { a, c} and D V = { e, f, g, h } . 

We propose a protocol to coordinate checkpointing operation on

ach worker in SAND. The checkpointing protocol is similar to the
5 libnids, http://libnids.sourceforge.net/ 
6 nDPI – Open and Extensible LGPLv3 Deep Packet Inspection Library. 

ttp://www.ntop.org/products/ndpi/ . 

http://zeromq.org/
http://libnids.sourceforge.net/
http://www.ntop.org/products/ndpi/
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Fig. 5. An example of our failure recovery process. 
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Chandy–Lamport snapshot algorithm ( Chandy and Lamport, 1985 ).

The main difference is that we apply it on stream processing systems

and prove that it provides strong consistency under the COM frame-

work. We allow workers to perform checkpoint at different time but

the system can create a global consistent checkpoint from all workers’

checkpoints. We assign a sequence number to each global checkpoint.

The coordinator starts the new global checkpoint with a sequence

number c by emitting special “checkpointing messages ” to all source

workers. When a source worker receives the checkpointing message,

it emits special events called “anchor events ” to all its next-hop work-

ers. An anchor event indicates that the internal state depending on

input events which arrived before this anchor event should be check-

pointed. So when a worker receives the anchor events from all of its

upstream workers, it checkpoints its internal state and emits anchor

events to its next-hop workers. The checkpointing protocol is stated

as follows: 

1. Suppose the checkpointing interval is T seconds which can be set

by the user. Every T seconds, the coordinator increments the se-

quence number and sends checkpointing messages to all source

workers to start a new global checkpoint with sequence number

c . 

2. When a source worker receives the checkpointing message from

the coordinator, it emits anchor events to all of its next-hop work-

ers. The checkpointing messages and anchor events contain c to

indicate that they are initiated by checkpoint sequence number c .

3. Each worker w uses a boolean array flag to track upstream work-

ers from which anchor events have not arrived. For each upstream

worker u ∈ U w 

, flag[u] is initialized to false which means w has

not received the anchor event from u . When worker w receives an

event E from an upstream worker u , it checks: 

(a) if flag[u] is false and E is a data event, worker w processes

the data event E normally; 

(b) if flag[u] is false and E is an anchor event, w sets flag[u]
to true. If for each v ∈ U w 

, flag[v] is true, w emits anchor

events to all of its next-hop workers, resets every element of

flag to false, and finally starts the checkpoint procedure by

forking analyzer processes: 
• The children analyzers checkpoint the internal state of

w , which we denote as s w 

c , to HDFS. Then the children

processes send an acknowledgement to the coordinator via

the container. 
• Concurrently, the parent analyzers can process input

events normally. 

(c) if flag[u] is true, w buffers E and postpones the processing

of E until w starts checkpoint c . If E is an anchor event, it must

be initiated by some checkpoint d where d > c . Since it will be

buffered, it will not affect checkpoint c . 

4. When the coordinator receives acknowledgements of checkpoint

c from all workers, it means the global checkpoint c completes. 
F  
o illustrate the protocol, let us consider the example in Fig. 2 again.

n this case, the two source workers are a and b . Suppose after the

oordinator starts the global checkpoint c , worker a emits an anchor

vent μa before α1 and worker b emits anchor event μb before β1 .

uppose the arrival order of input events to worker f is μa , α1 , μb ,

1 , α2 , β2 . According to our protocol, when worker f receives α1 , it

ill buffer α1 and postpone the processing of α1 until it receives μb .

hen μb arrives, f emits an anchor event to worker d . This implies

hat worker d receives this anchor event and checkpoints its internal

tate before γ 1 arrives. Now if worker f fails, we can rollback worker

 and d to checkpoint c , and then replay α1 , α2 , β1 , and β2 . Note that

he state of worker d at checkpoint c does not depend on data events

rom worker f after checkpoint c . Unlike the previous fault-tolerant

chemes described in Section 2 , when worker d processes duplicate

vents like γ ′ 
1 , it will not cause inconsistent state. Our checkpointing

lgorithm possesses the following property. 

roperty 4.1. For each worker w, the internal state s w 

c only depends on

he data events from all upstream workers of w before checkpoint c . 

roof. Suppose worker u sends a data event E to worker w after

orker u starts the checkpoint procedure of checkpoint c . When data

vent E arrives worker w , worker w has already received the anchor

vent from u and flag[u] was set to true. Term 3(c) of our proto-

ol ensures that data event E will be buffered and will not affect the

tate s w 

c . �

One important technical note is that at each checkpoint, a worker

eeds to buffer some input events until anchor events from all up-

tream workers arrive. The arrival times of anchor events are de-

ided by the processing delays of upstream workers, or the workloads

f upstream workers. As long as the workloads at workers are bal-

nced, then the system does not need to buffer too many input events.

e will present our evaluation on the runtime overhead caused by

uffering in Section 6 . 

Note that each worker records its output data events locally in an

utput buffer . This allows a worker to replay its output events when

ny of its next-hop workers fails. We cannot store these events to

DFS because of the latency incurs in HDFS. When the coordinator

etects that global checkpoint c is finished, it informs every worker

o delete output events before checkpoint c in its output buffer and

elete all data associated with checkpoint c − 1 on HDFS. 

.2. Failure recovery 

Next, we introduce how to recover the internal state of affected

orkers when some workers fail. First of all, the container of each

orker maintains heartbeats with the Zookeeper cluster by creating

n ephemeral node on Zookeeper. When a worker fails, the Zookeeper

ill discover the failure because it will not receive the heartbeat sig-

al from that worker, and so it will notify the coordinator. 

When the coordinator detects worker failures, suppose c is the

argest sequence number of available global checkpoints on HDFS. It

eans that for each worker w , state s w 

c is available on HDFS. Let F be

he set of failed internal workers and each worker in F has at least

ne upstream worker. When a worker w fails, we need to recover its

nternal state by resuming it to the latest checkpoint. However, as de-

cribed in Section 2 , the failure of worker w will also affect the order

f input events of D w 

. If it is not handled correctly, workers in D w 

ill generate inconsistent state. This implies we must also rollback

he workers in D w 

. Define the rollback set of F as R F = F ∪ D F , and

he replay set of F as P F = U R F 
− R F . During failure recovery, for each

orker w in R F , the coordinator restarts worker w and rolls it back to

tate s w 

c . Then the workers in P F replay the data events in their output

uffers. 

As an example shown in Fig. 5 , suppose the failed workers are

 = { d, e } . The downstream workers of failed workers are D = { g, h } .
F 
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c  
uring recovery, we rollback workers in R F = F ∪ D F = { d, e, g, h } ,
nd replay data events in the output buffers of P F = { b, c, f } . 

.3. Proof of consistency 

As described in Section 2 , because of the unpredicted interleav-

ng of input data events, running the same worker for multiple times

annot produce a unique output result even given the same input

treams. Nevertheless, we only need to ensure that the output of a

ecovered worker is one of the possible results without failures. We

efine consistency as following. 

efinition 4.2. A worker is consistent after recovery if and only if the

utput data events and internal state of the worker are one of the

ossible results when running the worker without failures. 

Next, we prove that all workers are consistent after failure recov-

ry in a SAND cluster. Let W denote the set of all workers in a cluster

nd assume W is a directed acyclic graph (DAG). Let G F be W −R F ,

hich is a set of workers which do not need to be rolled back. In other

ords, we partition W into two disjoint sets G F and R F . For example,

n Fig. 5 , we have F ={ d, e } , G F ={ a, b, c, f } , and R F ={ d, e, g, h } . Now

e prove workers in the two sets are consistent after recovery. 

heorem 4.3. Workers in G F are consistent after recovery. 

roof. Since the workers in G F do not fail and they do not need to

oll back during recovery, hence they are not affected during the re-

overy process, and they are consistent after the completion of the

ecovery. �

heorem 4.4. Workers in R F are consistent after recovery. 

roof. Suppose the checkpoint c is the latest available global consis-

ent checkpoint. For each worker w in R F , worker w is rolled back to

 

w 

c during recovery. Next, we prove the following claim: for V ⊂ R F ,

f workers in W − V are consistent, workers in V are also consistent

fter recovery. 

Supposing | V | = n, we shall prove the above claim using induc-

ion on n . When n = 1 , let V = { w } . The upstream workers of w must

elong to W − V . Since workers in W − V are consistent, they either

eplay or reproduce all input events of worker w after the checkpoint

 and before failure. So worker w can re-process input data events af-

er checkpoint c . By Property 4.1 , s w 

c only depends on the input events

efore the checkpoint c . So the replayed or reproduced data events do

ot compromise the state of worker w during recovery. Hence worker

 is consistent after recovery. 

Suppose the statement hold for n = k . Consider the case n = k + 1 .

ince W is a DAG, the subgraph V is also a DAG. So we can find a

orker w ∈ V with no incoming edges, which means all upstream

orkers of w are in W − V . Hence worker w is consistent after recov-

ry. By inductive hypothesis, workers in V − { w } are consistent after

ecovery. So workers in V are also consistent after recovery and the

esult follows by induction. 

By Theorem 4.3 , workers in W − R F = G F are consistent. Thus we

omplete the proof by the above claim. �

By Theorems 4.3 and 4.4 , all workers in the SAND cluster are con-

istent after recovery. 

.4. Discussion and limitations 

In this section, we discuss the limitations of SAND, in particular,

e state the two failure scenarios from which it cannot recover con-

istently. First, our fault-tolerant approach cannot recover from the

ailure in source workers. Note that the data source of a source worker

e.g., a in Fig. 5 ) is typically external to the stream processing sys-

em, hence SAND has no control over it so there is no guarantee that

he external data source can replay data during failure recovery. Thus
hen a source worker fails, the SAND can only recover its internal

tate from the most recent checkpoint, and data losses may happen.

e believe this is a reasonable assumption since any streaming ar-

hitecture has no control over the external source. 

Secondly, if an output buffer is overloaded, data losses may hap-

en because the dropped data events cannot be replayed during fail-

re recovery. Let us consider how we can reduce the probability of

uffer overflow. Consider the output buffers of the worker w . During

ormal processing, the output buffers of worker w need to store all

ata events generated by worker w between two consecutive check-

oints. When one of downstream workers of w fails, because input

treams keep coming in, worker w ’s output buffers also need to store

hese newly generated data events during the recovery time. This

mplies that the size of worker w ’s output buffers must be larger

han the size of data events generated during the checkpointing in-

erval and the recovery time. In other words, we have the following

elationship: 

ize of output buffers ≥ (checkpointing interval 

+ recovery time ) × throughput . 

n Experiment 3 of Section 6 , we show that, in the worst case, the

ecovery time is roughly equal to the checkpointing interval. The rea-

on is that most of the recovery time is used to process replayed data

vents which are limited by the checkpointing interval. Hence, we

ave: 

ize of output buffers ≥ 2 × checkpointing interval × throughput .

ence, once we know the available main memory for output buffers

nd the desired throughput, we can choose a proper checkpointing

nterval accordingly to avoid overloading output buffers. 

. Network analytics applications 

In this section, we present two real network streaming and an-

lytic applications using the COM framework and show how to use

AND to perform the traffic analysis. 

.1. Policy and Charging Control in cellular networks 

In recent years, Policy and Charging Control (PCC) is receiving a

ot of attention due to its functionalities in 3G or 4G mobile broad-

and networks. PCC can play a variety of roles ( Finnie, 2011 ), e.g., it

an be used to guarantee bandwidth for key applications, or to as-

ure fair usage of network bandwidth, or to ensure appropriate on-

ine charging based on user subscription data. In essence, PCC is a

oftware node which can aggregate information from cellular core

etworks and other sources in real-time. We design a new applica-

ion called SmartPCC as an extended PCC service. SmartPCC helps

obile operators to provide better user experience by reducing users

orry of potential huge mobile data bill. For example, when a user

veruses his mobile data traffic because he has been subscribing to

ideo streaming services, his mobile phone bill will be high. This form

f overuse is quite common and it creates a lot of grievances among

obile users, which in turn generates a lot of complaints to the mo-

ile operators. SmartPCC monitors quota balance and network traf-

c usage of a user in real-time. When a user’s behaviors trigger some

rocessing rule (e.g., quota exceeded), SmartPCC sends signals to

n external component called the Real-Time Decision (RTD). Then

he RTD component takes actions like sending alert to the user. For

xample, when the user is about to run out of mobile data quota,

martPCC notifies the RTD component to send a warning SMS to

he user about impending condition of exceeding mobile quota. Or

hen the user exceeds mobile data quota, SmartPCC notifies the

TD component to provide temporary free additional quota for the

ser, so the user can have some time to decide if he needs to pur-

hase additional data plan for the video streaming service. We design
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Fig. 6. SmartPCC : a real-world example of streaming applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. FlowControl . 
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7 WeChat is nothing like WhatsApp – and that makes it even more valuable, 

http://qz.com/179007/wechat-is-nothing-like-whatsapp-and-that-makes-it-even- 

more-valuable/ . 
a SmartPCC over the COM framework and it is illustrated in Fig. 6 .

Furthermore, SmartPCC is implemented on the top of SAND. 

SmartPCC receives two different types of events from the cellular

core network: 

• Event Data Record (EDR): When users access the Internet through

cellular networks, the accounting component in the network pe-

riodically reports the usage of users’ data plans to SmartPCC . The

content of an EDR includes timestamp, user’s MSISDN, the name

of the data plan, quota limit, quota usage, etc. By analyzing EDRs,

SmartPCC can perform real-time monitor on the quota usage of

each user. 
• Streaming event: When users subscribe to a video streaming ser-

vice in cellular networks, the probe device in the cellular net-

work monitors video streaming behaviors and periodically sends

streaming events to SmartPCC . The content of a streaming event

includes timestamp, user’s MSISDN, address of the video, etc. By

analyzing streaming events, SmartPCC can determine whether a

user is using video streaming service. 

Next, we elaborate the functionality of each worker in SmartPCC
under the COM framework. As shown in Fig. 6 , SmartPCC is com-

posed of four workers: (1) EDR-Spout , (2) Streaming-Spout , (3) EDR-

Adapter , and (4) Joiner . The EDR-Spout and Streaming-Spout read

EDRs and streaming events from external sources respectively. The

EDR-Adapter receives EDRs from the EDR-Spout, filters out EDRs

whose quota usage is less than 90% of the quota limit, and dispatches

EDRs to the Joiner. The core component of SmartPCC is the Joiner

that receives EDRs and streaming events from the EDR-Adapter and

Streaming-Spout as input, respectively. The Joiner parses all the in-

put events and caches each EDR in a 15-min sliding time window

format. When a streaming event is received, the Joiner correlates it

with cached EDRs which have the same user’s MSISDN. The Joiner

has three processing rules: 

1. If the Joiner receives a streaming event and the user’s quota usage

is equal to or larger than 90% of the quota limit, the Joiner sends

signal a with the user’s MSISDN to the RTD component. After re-

ceiving signal a , the RTD component sends an SMS to alert the

user that he is about to run out of quota. 

2. If the Joiner receives a streaming event and the user has run out

of quota already, the Joiner sends signal b to the RTD component.

After receiving signal b , the RTD component sends another SMS

to the user and provides the user with some temporary free addi-

tional quota. 

3. If the Joiner receives a streaming event and the user has run out

of free quota provided by the mobile operator, the Joiner sends

signal c to the RTD component. After receiving signal c , the RTD

component sends the final SMS alert to the user as a final warning

that the user has run out of quota and needs to pay extra charge

so to continue to use the mobile data service. 

For SmartPCC , it is critical to provide strong consistency after

failure recovery, because the output of SmartPCC has a great impact

on the purchasing decisions of users and the correctness of output is

important for the user experience. In Section 6 Experiment 4 , we will

present the experimental results of SmartPCC . 
.2. WeChat flow control 

FlowControl is another example of extended PCC services

hich can help mobile operators to prioritize key applications (e.g.,

oice call) in cellular networks. WeChat 7 is one of the most pop-

lar mobile text and voice messaging communication services in

hina. Voice messages sent through WeChat incur high volume of

ata transmission and occupy many wireless channel resources in

G networks, this translates to a negative impact on the quality

f voice call. Mobile operators want to assure the quality of voice

alls by limiting the bandwidth of data transmission. We consider

lowControl , which monitors network traffic incurred by WeChat

oice messages and the rate of voice call channel of each Base Station

ontroller (BSC). When the rate of voice call channel of a BSC is high,

lowControl notifies the BSC to limit the rate of data transmission

o to assure the quality of voice calls. 

As shown in Fig. 7 , one can compose FlowControl using the

OM framework. Furthermore, FlowControl is more complex than

revious applications and it reuses three workers of AppTracker
escribed in Section 2 . In SAND, we provide many useful work-

rs for packet capture, packet decoding, DPI, filtering, and window

oin. Users can exploit existed workers to compose their own appli-

ations. The Spout captures network traffic packets from the GPRS

ore network. Then the DPI-Engine classifies decoded packets into

pplication-level protocols. The WeChat-Filter filters out irrelevant

ackets and generates WeChat events . The content of a WeChat event

ncludes timestamp, WeChat voice message size, user’s MSISDN, Lo-

ation Area Code (LAC), and Cell ID. The user’s MSISDN, LAC, and Cell

D are extracted from the GPRS header of each packet by the GPRS-

ecoders . BSCs periodically send BSC Key Performance Indicator (KPI)

vents to the BSC-KPI-Spout . The content of a BSC KPI event includes

imestamp, BSC ID, and the rate of voice call channel traffic. 

The Matcher receives WeChat events and BSC KPI events from the

eChat-Filter and BSC-KPI-Spout, respectively. The Matcher stores

he rate of voice call channel of each BSC extracted from BSC KPI

vents. For each WeChat event, the Matcher first uses its LAC and Cell

D to locate the BSC that rigger this event. Then the Matcher calcu-

ates the total volume of WeChat voice messages sent from this BSC

n the last 5 min. For each BSC, if the rate of voice call channel exceeds

hresholds t 1 and the network traffic incurred by WeChat voice mes-

ages exceeds thresholds t 2 , the Matcher notifies the BSC to limit the

ate of data transmission. 

.3. Real-time heavy hitter detection 

Real-time identification of significant patterns in network traf-

c, such as TCP/IP flows which contribute large volumes of network

raffic (heavy hitters), or those flows which introduce large change

n volumes of network traffic (heavy changers) ( Estan and Varghese,

003 ), is critical for anomaly detection. For example, a flow that ac-

ounts for more than 1% of the total traffic may suggest over-usage

http://qz.com/179007/wechat-is-nothing-like-whatsapp-and-that-makes-it-even-more-valuable/


Q. Liu et al. / The Journal of Systems and Software 122 (2016) 553–563 561 

o  

i  

b  

p  

t  

a  

c  

h  

T  

a  

e

 

i  

f  

n  

t  

F  

a  

h  

t  

d  

S  

t

6

 

p  

a  

f  

b

E  

w  

S  

p  

fi  

s  

t  

a  

c  

p  

p  

o  

i  

b

 

i  

h  

m  

o  

fi  

p  

l  

l  

u  

m  

T  

 

S  

i  

a  

t  

h

Table 1 

Performance of Storm, Blockmon and SAND. 

Streaming system Packets/s Payload rate Header rate 

Storm 260K 840 Mb/s 81 .15 Mb/s 

Blockmon 2 .7M 8 .4 Gb/s 844 .9 Mb/s 

SAND 9 .6M 31 .4 Gb/s 3031 .7 Mb/s 
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Fig. 8. Scalability of SAND. 
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Table 2 

Result of AppTracker . 

Application Distribution (%) 

HTTP 15 .60 
f network bandwidth. However, as the Internet continues to grow,

dentifying heavy hitter/heavy changer becomes challenging due to

oth the computational overheads and memory requirements. To im-

rove scalability, anomaly detection needs to be performed on dis-

ributed stream processing systems. However, previous techniques

re mainly studied and evaluated in a single-processor or single ma-

hine setting. In this work, We implement four state-of-the-art heavy

itter and heavy changer detection algorithms on the top of SAND.

hese algorithms are: Combinational Group Testing (CGT) ( Cormode

nd Muthukrishnan, 2005 ), SeqHash ( Bu et al., 2010 ), Fast Sketch ( Liu

t al., 2012 ), and LD-Sketch ( Huang and Lee, 2014 ). 

We implement these four algorithms in a single worker as shown

n Fig. 3 . For each algorithm, the dispatcher reads raw packets and

orwards them to selected analyzers. Each analyzer updates its inter-

al data structure (e.g., sketch) when it receives a packet. The collec-

or summarizes and outputs anomalies. Note that CGT, SeqHash, and

ast Sketch are designed for the single-processor setting, and their

ccuracy decrease as the number of analyzers increase. On the other

and, LD-Sketch is designed for distributed systems and can exploit

he distributed nature to improve detection accuracy by aggregating

etection results from multiple analyzers ( Huang and Lee, 2014 ). In

ection 6 Experiment 4 , we will present the experimental results of

hese heavy hitter and heavy changer detection algorithms. 

. Performance evaluation of SAND 

In this section, we present the performance evaluation of SAND. In

articular, we show its sustainability under high input traffic, its scal-

bility and fault-tolerant capability. We also implement and compare

our different heavy hitter detection algorithms to show the extensi-

ility of SAND. 

xperiment 1 (Sustainability of SAND under high input traffic) . First,

e compare SAND with two open source stream processing systems,

torm 

1 and Blockmon ( Huici et al., 2012 ), and see how these stream

rocessing systems stack up when they are subjected under high traf-

c rate. We implement an application called packet counter and in-

tall it on Storm, Blockmon, and SAND. The packet counter applica-

ion reads network packets, decodes the TCP/IP header of each packet

nd counts total number and size of packets. We use this packet

ounter application to demonstrate the overheads of different stream

rocessing systems. In SAND, we use two workers to implement the

acket decoder: one source worker for reading network packets and

ne worker for counting packets. We implement similar functional-

ty in Storm (using one spout and one bolt) and Blockmon (using two

locks). 

We install SAND, Storm, and Blockmon in our testbed. Our testbed

s a quad-core 3.10 GHz machine with 4 GB RAM. We collect a packet

eader trace from CAIDA 

8 . The trace lasts for 21 min in the PCAP for-

at, and contains 331 million packets accounting for a total of 143 GB

f traffic. To analyze the performance of the systems at the peak traf-

c rate, we load the trace file into memory, and have the systems

rocess the packet headers as fast as possible. Since the memory is

imited, we only load the first 2 GB of the trace file and replay the

oaded chunk for 90 s. Loading the trace file into memory enables

s to eliminate the overhead due to disk read, and hence the perfor-

ance bottleneck should lie within the stream processing systems.

he measurement is repeated for 10 times and we average the results.

The throughput results of three systems are presented in Table 1 .

AND achieves the highest throughput of 31 Gb/s, which shows that

t can process packets at the core routers level. Furthermore, the

chieved throughput of SAND is 3.7 times and 37.4 times as compared

o Blockmon and Storm, respectively. The main reason why Storm has
8 The CAIDA Anonymized Internet Traces 2009 Dataset, 

ttp://www.caida.org/data/passive/passive_2009_dataset.xml . 
oor performance is because it was implemented in Java, and it is

ainly used to perform analytics for higher layer applications (e.g.,

eb analytics) but not for network traffic. Blockmon is implemented

n C++, but we noticed that its implementation of internal com-

unication channels is not efficient which causes the performance

egradation. 

xperiment 2 (Scalability of SAND) . We use AppTracker described

n Section 2 to demonstrate the scalability of SAND. Our testbed is a

luster of three Linux 3.2 servers: S1, S2 and S3. The three servers are

onnected by 1 Gb/s LAN. Each server has 16 physical 2.10 GHz CPU

ores and 94 GB RAM. We run our evaluation on a 2-h network trace

32 GB), which is collected from a commercial GPRS core network

n China in 2013. The raw IP packets with full payload are captured

without sampling) from the GPRS core network and stored in the

CAP format. We also deploy the Zookeeper and HDFS service on the

hree servers. As an example, in Table 2 , we show the top 5 applica-

ions in our trace obtained from the output of AppTracker . 
We then evaluate the throughput of the overall system. First, we

un four workers on a single server. In our implementation, the over-

ll performance is bounded by GPRS-Decoder, so we vary the num-

er of analyzers of GPRS-Decoder. As shown in Fig. 8 , the throughput

cales up linearly as we add analyzers. Second, we run AppTracker
n three servers. We run Spout, DPI-Engine and Tracker on S1, and two

PRS-Decoders on S2 and S3. Again, we vary the number of analyz-

rs of GPRS-Decoders. As shown in Fig. 8 , the throughput also scales

p linearly as we add analyzers. The result shows that (1) SAND can

cale up by parallelizing the computation of a worker on multiple CPU

ores in a single server; (2) it can also scale out by running parallel

orkers on multiple servers. Note that in the case of three servers,

2 and S3 are dedicated for GPRS-Decoder and SAND can scale up

ntil we run eleven analyzers in each GPRS-Decoder. While in the

ase of single server, the throughput of SAND reaches the maximum
Sina Weibo 4 .13 

QQ 2 .56 

DNS 2 .34 

HTTP in QQ 2 .17 

http://www.caida.org/data/passive/passive_2009_dataset.xml
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for nine analyzers in GPRS-Decoder, because the server must reserve

some computation resource for other workers. 

Experiment 3 (Fault-tolerance of SAND) . In this experiment, we de-

ploy AppTracker on three servers as in Experiment 2 . We evalu-

ate the throughput of SAND using different checkpointing intervals.

As shown in Fig. 9 , the overheads of our checkpointing protocol is

negligible. 

Next, we evaluate the recovery time of SAND after different fail-

ure scenarios. We also set the number of analyzers in each of the

two GPRS-Decoders as nine. The result is presented in Fig. 11 . First,

we set the checkpointing interval as T =5 s. Then we terminate both

the GPRS-Decoder and DPI-Engine processes at time t , t and t 
2 3 5 
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Fig. 11. Recove
espectively. In this scenario, SAND can recover from failures in about

ew seconds. Secondly, we set the checkpointing interval as T =10 s.

e terminate the Tracker at t 1 . In this scenario, SAND can recover in

 s. However, when we kill the GPRS-Decoder at t 4 , it takes around

1 s to recover. The recovery time is composed of three parts (1) the

ime for the coordinator to detect failures; (2) the time to restart

nd roll back failed workers; (3) the time for those workers to pro-

ess replayed data events. Usually, a larger checkpointing interval in-

reases the time to process replayed events in upstream workers’ out-

ut buffer, so we can see in Fig. 11 that the recovery time at t 4 is longer

han t 2 , t 3 and t 5 . 

xperiment 4 (Using SAND for real-time heavy hitter detec-

ion) . We use the four heavy hitter detection algorithms described

n Section 5.3 to show how to implement and scale up anomaly de-

ection algorithms on SAND. Our testbed is a multi-core server with

2 physical 2.93 GHz CPU cores and 50 GB RAM. We run our evalua-

ion on real IP packet header traces which we collected on December

010 from a commercial 3G UMTS network in mainland China. The

races contain 1.1 billion packets that account for a total of around

00 GB of traffic. 

Fig. 10 shows the throughput of the four heavy hitter detection al-

orithms using multiple analyzers. One can observe that the through-

ut increases almost linearly as the number of analyzers grows. When

sing five analyzers, Fast Sketch can reach over 30 Gb/s of through-

ut. This shows that using SAND, we can scale up the through-

ut of different traffic anomaly detection algorithms in SAND via

arallelization. 

xperiment 5 (Using SAND for Policy and Charging Control in cellular

etworks) . We use SmartPCC described in Section 5.1 to demon-

trate the extensibility of SAND. Our testbed is S1 in Experiment 2 .

o drive the experiment, we generate a synthetical trace of EDRs and

treaming events on the disk. Similar to previous experiments, in or-

er to eliminate the overhead due to disk read, we load the trace

le to the memory at the beginning. SmartPCC on SAND can han-

le 1.3 million EDRs per second and 0.9 million streaming events per

econd (2.2 million tuples per second in total). Without stream pro-

essing capabilities in the current cellular networks, operators can

nly implement and deploy PCC systems on specialized hardwares

hich are not scalable and only have processing throughput with less

han 30 0,0 0 0 tuples per second. Furthermore, we cannot implement

omplex applications like SmartPCC or FlowControl on the top

f these specialized hardwares, because they are not extensible like

AND. 
0 40 50 60

e (seconds)

Interval 5s
Interval 10s

t5
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. Conclusion 

We have presented SAND, a new distributed stream processing

ystem for network analytics on core networks. SAND is a general

urpose stream processing system on which one can build various

eal-time services. We demonstrated how one can build new services

uch as heavy network traffic detectors as well as policy and charg-

ng control for large scale cellular networks. SAND can sustain high-

peed network traffic and provide reliable fault-tolerance. SAND uses

 novel checkpointing protocol to provide strong consistency of pro-

essing results even when the system experiences multiple node fail-

re. We demonstrated that SAND can operate at core routers level,

nd the fault-tolerance approach has low overheads and can recover

rom failure in order of seconds. 

upplementary material 

Supplementary material associated with this article can be found,

n the online version, at 10.1016/j.jss.2015.07.049 
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