
(ÑTHIS SIDEBAR DOES NOT PRINTÑ)
DESIGN GUIDE

This PowerPoint 2007 template produces an A0
presentation poster. You can use it to create your
research poster and save valuable time placing titles,
subtitles, text, and graphics.

We provide a series of online tutorials that will guide
you through the poster design process and answer your
poster production questions. To view our template
tutorials, go online to PosterPresentations.com and
click on HELP DESK.

When you are ready to print your poster, go online to
PosterPresentations.com

Need assistance? Call us at 1.510.649.3001

QUICK START

Zoom in and out
 As you work on your poster zoom in and out to
the level that is more comfortable to you. Go
to VIEW > ZOOM.

Title, Authors, and Affiliations

Start designing your poster by adding the title, the names of
the authors, and the affiliated institutions. You can type or
paste text into the provided boxes. The template will
automatically adjust the size of your text to fit the title box.
You can manually override this feature and change the size of
your text.

TIP: The font size of your title should be bigger than your
name(s) and institution name(s).

Adding Logos / Seals
Most often, logos are added on each side of the title. You can
insert a logo by dragging and dropping it from your desktop,
copy and paste or by going to INSERT > PICTURES. Logos
taken from web sites are likely to be low quality when
printed. Zoom it at 100% to see what the logo will look like
on the final poster and make any necessary adjustments.

TIP: See if your schoolÕs logo is available on our free poster
templates page.

Photographs / Graphics
You can add images by dragging and dropping from your
desktop, copy and paste, or by going to INSERT > PICTURES.
Resize images proportionally by holding down the SHIFT key
and dragging one of the corner handles. For a professional-
looking poster, do not distort your images by enlarging them
disproportionally.

Image Quality Check
Zoom in and look at your images at 100% magnification. If
they look good they will print well.

!"#$#%&'()#*+!"+,) (

!"#$%#&'($)*%+&

,"
")

&
-#

.$
/$

0&
12

(*
.3

4&

5(
)&

-#
.$

/$
0&

12
(*

.3
4&

QUICK START (con t .)

How to change the template color theme
You can easily change the color theme of your poster by going
to the DESIGN menu, click on COLORS, and choose the color
theme of your choice. You can also create your own color
theme.

You can also manually change the color of your background by
going to VIEW > SLIDE MASTER. After you finish working on
the master be sure to go to VIEW > NORMAL to continue
working on your poster.

How to add Text
The template comes with a number of pre-
formatted placeholders for headers and
text blocks. You can add more blocks by
copying and pasting the existing ones or by
adding a text box from the HOME menu.

 Text size
Adjust the size of your text based on how much content you
have to present.
The default template text offers a good starting point. Follow
the conference requirements.

How to add Tables
To add a table from scratch go to the INSERT menu
and click on TABLE. A drop-down box will help you
select rows and columns.

You can also copy and a paste a table from Word or another
PowerPoint document. A pasted table may need to be re-
formatted by RIGHT-CLICK > FORMAT SHAPE, TEXT BOX,
Margins.

Graphs / Charts
You can simply copy and paste charts and graphs from Excel
or Word. Some reformatting may be required depending on
how the original document has been created.

How to change the column configuration
RIGHT-CLICK on the poster background and select LAYOUT to
see the column options available for this template. The
poster columns can also be customized on the Master. VIEW >
MASTER.

How to remove the info bars

If you are working in PowerPoint for Windows and have
finished your poster, save as PDF and the bars will not be
included. You can also delete them by going to VIEW >
MASTER. On the Mac adjust the Page-Setup to match the
Page-Setup in PowerPoint before you create a PDF. You can
also delete them from the Slide Master.

Save your work
Save your template as a PowerPoint document. For printing,
save as PowerPoint of ÒPrint-qualityÓ PDF.

Print your poster
When you are ready to have your poster printed go online to
PosterPresentations.com and click on the ÒOrder Your PosterÓ
button. Choose the poster type the best suits your needs and
submit your order. If you submit a PowerPoint document you
will be receiving a PDF proof for your approval prior to
printing. If your order is placed and paid for before noon,
Pacific, Monday through Friday, your order will ship out that
same day. Next day, Second day, Third day, and Free Ground
services are offered. Go to PosterPresentations.com for more
information.

Student discounts are available on our Facebook page.
Go to PosterPresentations.com and click on the FB icon.

6&789:&;"+3%#;#%+%$3(/"$+<=">&
&&&&799?&@"2#3'&A3#%%3&B&C$.3&!&&&&&&&&&
&&&&&5%#D%*%4&!E&FG?98&
&&&&-./012-21/13012456789:;.6 (

We have large graphs :
¥! Web graph, Social graph, User-movie ratings graph, É

We need to do intensive computation on graphs:
¥! PageRank, community detection, alternating least squares for collaborative

filtering, shortest path, É

<=>(*83591(?7;=831(*>/016@(

,A8B35(*>/016/ (
Vertex-centric streamlined processing
¥! V-shards are cached
¥! G-shards stream in

¥! Execute update(v) in parallel

"1C1213;1/(
[1] Kyrola, A., Blelloch, G., & Guestrin, C. (2012). GraphChi: Large-Scale Graph
Computation on Just a PC. In OSDI.

[2] Roy, A., Mihailovic, I., & Zwaenepoel, W. (2013). X-Stream: Edge-centric Graph
Processing using Streaming Partitions. In SOSP.

[3] Stanton, I., & Kliot , G. (2012). Streaming Graph Partitioning for Large Distributed
Graphs. In KDD.

[4] Cheng, J., Liu, Q., Li, Z., Fan, W., Lui, J. C. S., & He, C. (2015). VENUS: Vertex-
Centric Streamlined Graph Computation on a Single PC. In ICDE.
Contact : Qin Liu (qliu@cse.cuhk.edu.hk)

Vertex-centric programming model : used by Pregel, GraphLab, GraphChi, É
¥! Each vertex updates itself based on its neighborhood
A seminar work, GraphChi[1]

¥! Updated data on each vertex must be propagated to its neighbors through disk

¥! Extensive disk I/O

Our new system, VENUS:

¥! Only store mutable values on vertices

¥! Much less data access

¥! Enable streamlined processing
¥! Sacrifice little expressiveness

9H2(I%.&J"('K+&E#D&L(MB&7&N'%&!'.$%+%&C$.O%#+.34&"P&H"$0&Q"$0��

&

R.%P%$0&!'%$09B&S.$&L.2DB&T'%$02"&L.9B&U%.&@($9B&R"'$&!<A<&L2.7B&!'%$0&H%9&

&

VWJCAX&V%#3%YZ!%$3#.=&A3#%(>*.$%)&,#(-'&!">-23(/"$&"$&(&A.$0*%&;!&

[2-*.=(3%)&)(3(��

for each iteration
 for each vertex v
 update(v)

void update(v)
 fetch data from each in-edge
 update data on v
 spread data to each out-edge��

void update(v)
 fetch data from each in-edge
 update data on v
 spread data to each out-edge��

83E3185=F.2��

&2;=801;0G21(IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

Fig. 1. The VENUS Architecture

node v. Node u is called an in-neighbor of v, and v an out-
neighbor of u. (u, v) is called an in-edge of v and an out-
edge of u, and u and v are called the source and destination
of edge (u, v) respectively.

Most graph tasks are iterative and vertex-centric in na-
ture, and any update of a vertex value in each iteration
usually involves only its in-neighbors’ values. Once a vertex
is updated, it will trigger the updates of its out-neighbors.
This dynamic continues until convergence or certain condi-
tions are met. The disk-based approach organizes the graph
data into a number of shards on disk, so that each shard
can fit in the main memory. Each shard contains all needed
information for computing updates of a number of vertices.
One iteration will execute all shards. Hence there is a huge
amount of disk data to be accessed per iteration, which may
result in extensive IOs and become a bottleneck of the disk-
based approach. Therefore, a disk-based graph computation
system needs to manage the storage and the use of memory
and CPU in an intelligent way to minimize the amount of
disk data to be accessed.

VENUS, its architecture depicted in Figure 1, makes
use of a novel management scheme of disk storage and
main memory, in order to support vertex-centric stream-
lined processing. VENUS decomposes each task into two
stages: offline preprocessing and online processing. In the
offline preprocessing, VENUS processes the input graph and
constructs the graph storage on disk, which is organized as
a number of shards. For each shard, the edges with their
associated edge values are stored in the structure table,
while the vertex data, including mutable vertex values, are
kept in the value table. In the online processing, a graph
computation task is defined using an update function. Then
VENUS executes the update function on each vertex and
manages the interaction between CPU, memory, and disk.

2.2 Vertex-Centric Streamlined Processing

VENUS enables vertex-centric streamlined processing (VSP)
on our storage system, which is crucial in fast loading of
graph data and rapid parallel execution of update functions.
As we will show later, it has a superior performance with
much less data transfer overhead. Furthermore, it is more
effective in main memory utilization, as compared with
other schemes. We will elaborate on this in Section 2.3. To
support streamlined processing, we propose a new graph

11

10

7

5

8

12

9

6

4

21

3

Fig. 2. Example Graph

TABLE 1
Sharding Example: VENUS

Interval I1 = [1, 4] I2 = [5, 8] I3 = [9, 12]

v-shard I1 ! { 6, 7, 9, 10} I2 ! { 1, 3, 10, 11} I3 ! { 2, 3, 4, 6}

g-shard 7,9,10 " 1 6,7,8,11 " 5 2,3,4,10,11 " 9
6,10 " 2 1,10 " 6 11 " 10

1,2,6 " 3 3,10,11 " 7 4,6 " 11
1,2,6,7,10 " 4 3,6,11 " 8 2,3,9,10,11 " 12

S(I) 6 1 2
7 3 3
9 10 4

10 11 6

sharding method, a new graph storage scheme, and a novel
external graph computing model. Let us now provide a
brief overview of our sharding, storage, and external graph
computing model.

Graph sharding. Suppose the graph is too big to fit in the
main memory. Then how it is organized on disk will affect
how it will be accessed and processed afterwards. VENUS
splits the vertices set V into P disjoint intervals. Each inter-
val defines a g-shard and a v-shard, as follows. The g-shard
stores all the edges (and the associated attributes) with des-
tinations in that interval. The v-shard contains all vertices
in the g-shard which includes the source and destination
of each edge. Edges in each g-shard are ordered by desti-
nation, where the in-edges (and their associated read-only
attributes) of a vertex are stored consecutively as a structure
record. There are |V | structure records in total for the whole
graph. The g-shard and the v-shard corresponding to the
same vertex interval make a full shard. To illustrate the
concepts of shard, g-shard, and v-shard, consider the graph
with 12 vertices as shown in Figure 2. Suppose the vertices
are divided into three intervals: I1 = [1, 4], I2 = [5, 8], and
I3 = [9, 12]. Then, the resulting shards, including g-shards
and v-shards, are listed in Table 1.

In practice, all g-shards are further concatenated to form
the structure table, i.e., a stream of structure records (Fig-
ure 3). Such a design allows executing vertex update on the

.>>23(M*%&%)0%+�� >23(M*%&O%#/=%+&
($)&)(3(��

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

Fig. 1. The VENUS Architecture

node v. Node u is called an in-neighbor of v, and v an out-
neighbor of u. (u, v) is called an in-edge of v and an out-
edge of u, and u and v are called the source and destination
of edge (u, v) respectively.

Most graph tasks are iterative and vertex-centric in na-
ture, and any update of a vertex value in each iteration
usually involves only its in-neighborsÕ values. Once a vertex
is updated, it will trigger the updates of its out-neighbors.
This dynamic continues until convergence or certain condi-
tions are met. The disk-based approach organizes the graph
data into a number of shardson disk, so that each shard
can Þt in the main memory. Each shard contains all needed
information for computing updates of a number of vertices.
One iteration will execute all shards. Hence there is a huge
amount of disk data to be accessed per iteration, which may
result in extensive IOs and become a bottleneck of the disk-
based approach. Therefore, a disk-based graph computation
system needs to manage the storage and the use of memory
and CPU in an intelligent way to minimize the amount of
disk data to be accessed.

VENUS, its architecture depicted in Figure 1, makes
use of a novel management scheme of disk storage and
main memory, in order to support vertex-centric stream-
lined processing. VENUS decomposes each task into two
stages: ofßine preprocessing and online processing. In the
ofßine preprocessing, VENUS processes the input graph and
constructs the graph storage on disk, which is organized as
a number of shards. For each shard, the edges with their
associated edge values are stored in the structure table,
while the vertex data, including mutable vertex values, are
kept in the value table. In the online processing, a graph
computation task is deÞned using an update function. Then
VENUS executes the update function on each vertex and
manages the interaction between CPU, memory, and disk.

2.2 Vertex-Centric Streamlined Processing

VENUS enables vertex-centric streamlined processing (VSP)
on our storage system, which is crucial in fast loading of
graph data and rapid parallel execution of update functions.
As we will show later, it has a superior performance with
much less data transfer overhead. Furthermore, it is more
effective in main memory utilization, as compared with
other schemes. We will elaborate on this in Section 2.3. To
support streamlined processing, we propose a new graph

11

10

7

5

8

12

9

6

4

21

3

Fig. 2. Example Graph

TABLE 1
Sharding Example: VENUS

Interval I 1 = [1 , 4] I 2 = [5 , 8] I 3 = [9 , 12]

v-shard I 1 ! { 6, 7, 9, 10} I 2 ! { 1, 3, 10, 11} I 3 ! { 2, 3, 4, 6}

g-shard 7,9,10" 1 6,7,8,11" 5 2,3,4,10,11" 9
6,10" 2 1,10" 6 11" 10
1,2,6" 3 3,10,11" 7 4,6" 11

1,2,6,7,10" 4 3,6,11" 8 2,3,9,10,11" 12

S(I) 6 1 2
7 3 3
9 10 4

10 11 6

sharding method, a new graph storage scheme, and a novel
external graph computing model. Let us now provide a
brief overview of our sharding, storage, and external graph
computing model.

Graph sharding. Suppose the graph is too big to Þt in the
main memory. Then how it is organized on disk will affect
how it will be accessed and processed afterwards. VENUS
splits the vertices set V into P disjoint intervals. Each inter-
val deÞnes a g-shardand a v-shard, as follows. The g-shard
stores all the edges (and the associated attributes) with des-
tinations in that interval. The v-shard contains all vertices
in the g-shard which includes the source and destination
of each edge. Edges in each g-shard are ordered by desti-
nation, where the in-edges (and their associated read-only
attributes) of a vertex are stored consecutively as a structure
record. There are |V | structure records in total for the whole
graph. The g-shard and the v-shard corresponding to the
same vertex interval make a full shard. To illustrate the
concepts of shard, g-shard, and v-shard, consider the graph
with 12 vertices as shown in Figure 2. Suppose the vertices
are divided into three intervals: I 1 = [1 , 4], I 2 = [5 , 8], and
I 3 = [9 , 12]. Then, the resulting shards, including g-shards
and v-shards, are listed in Table 1.

In practice, all g-shards are further concatenated to form
the structure table, i.e., a stream of structure records (Fig-
ure 3). Such a design allows executing vertex update on the

#3012H79�� #I JKILMN�� #DJKOLPN�� #QJKRLIDN��

,Z+'(#) �� ?BFB98&\&9&
]B98&\&7&
9B7B]&\&:&

9B7B]B?B98&\&G��

]B?B^B99&\&_&
9B98&\&]&

:B98B99&\&?&
:B]B99&\&^&��

7B:BGB98B99&\&&F&
99&\&98&
GB]&\&99&

7B:BFB98B99&\&97��

VZ+'(#)�� 9̀�$ a]B?BFB98b&�� 7̀�$ a9B:B98B99b�� :̀ �$ a7B:BGB]b��

,A-128613079("1/G90/(
Run PageRank on Twitter graph
¥! Faster due to less data access

Clueweb12: web scale graph
¥! 978 million nodes, 42.5 billion edges
¥! 402 GB on disk

¥! 2 iterations of PageRank

1

0.5 1 2 4 8
0

500

1,000

1,500

2,000

Memory (GB)

E
la

ps
ed

Ti
m

e
(s

ec
.)

GraphChi X-Stream VENUS-I VENUS-II

Fig. 1. PageRank

2

0. 5 1 2 4 8

0

5

10

15

20

25

Memory (GB)

D
a
ta

S
iz

e
o
f

W
ri
te

(G
B

)

GraphChi X-Stream VENUS-I VENUS-II

(a) Data Size of Write

0. 5 1 2 4 8

0

5

10

15

20

25

30

35

Memory (GB)

D
a
ta

S
iz

e
o
f

R
e
a
d

(G
B

)

GraphChi X-Stream VENUS-I VENUS-II

(b) Data Size of Read

WCC CD

0

2, 000

4 , 000

Task

E
la

p
se

d
T
im

e
(s

e
c.

)

PSW ECP VSP-I VSP-II

(c) Overall Time

WCC CD

0

100

200

300

Task

E
la

p
se

d
T
im

e
(s

e
c.

)

PSW ECP VSP-I VSP-II

(d) Data Size of Write

WCC CD

0

200

400

600

Task

E
la

p
se

d
T
im

e
(s

e
c.

)

PSW ECP VSP-I VSP-II

(e) Data Size of Read

Fig. 2. WCC & CD on the twitter-2010 graph

Netßix KDD-Cup

0

500

1, 000

1 , 500

Dataset

E
la

p
se

d
T
im

e
(s

e
c.

)

PSW ECP VSP-I VSP-II

(a) Overall Time

Netßix KDD-Cup

0

100

200

Dataset

D
a
ta

S
iz

e
o
f

W
ri
te

(G
B

)

PSW ECP VSP-I VSP-II

(b) Data Size of Write

Netßix KDD-Cup

0

100

200

Dataset

D
a
ta

S
iz

e
o
f

R
e
a
d

(G
B

)

PSW ECP VSP-I VSP-II

(c) Data Size of Read

Fig. 3. ALS on the Netßix and KDD-Cup graph

4

0

0.5

1

1.5

2

2.5

á104

PageRank on clueweb12

E
la

ps
ed

Ti
m

e
(s

ec
.)

GraphChi X-Stream VENUS-I VENUS-II

(a) Overall Time

+S.(*.9GB.3/(

Systems for graph computation: distributed or single-machine ?

Distributed systems: Pregel, GraphLab, GraphX, Giraph, É

¥! Expensive clusters
¥! Complex setup & configuration
¥! Writing buggy distributed programs

Single-machine systems: GraphChi[1], X-Stream[2], TurboGraph, FlashGraph, É
¥! Store graphs on disk or SSDs

¥! Graph computation on a commodity PC (cheap, easy to program)

We can achieve competitive results over distributed systems:

PageRank on a Twitter graph (41M nodes, 1.4B edges)
¥! Spark: 8.1min with 50 machines (each with 2 CPUs, 7.5G RAM)[3]
¥! VENUS: 8 min on a single machine with quad-core CPU, 16G RAM

T,%U*V(T1201AEW13028;(*021769831X($27-=(W.6-G07B.3(

?.BH7B.3/(

!39831(W.6-GB35(?.X19(

!Y831(*0.2751(

?783(#X17/(
Disk storage (offline)
¥! Split graph into shards and execute each in memory
¥! Separate edge data and vertex data

Computing model (online)
¥! Cache vertex data
¥! Load edge data sequentially

¥! Execute update functions in parallel

Each shard corresponds to an interval of vertices:
G-shard: in-edges of nodes in the interval (immutable)
V-shard: vertex values of all vertices in the shard (mutable)

'.7X(73X(U-X701(HE/=72X/(
Two I/O efficient algorithms:
1.! An extension of PSW[1];
2.! A merge-join between value table and v-shard

Detailed in our paper[4].

