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This PowerPoint 2007 template produces an A0 
presentation poster. You can use it to create your 
research poster and save valuable time placing titles, 
subtitles, text, and graphics.  
 
We provide a series of online tutorials that will guide 
you through the poster design process and answer your 
poster production questions. To view our template 
tutorials, go online to PosterPresentations.com  and 
click on HELP DESK. 
 
When you are ready to print your poster, go online to 
PosterPresentations.com 
 
Need assistance? Call us at 1.510.649.3001 
 

 

QUICK START 
 

Zoom in and out 
 As you work on your poster zoom in and out to 
the level that is more comfortable to you. Go 
to VIEW > ZOOM. 

 
Title, Authors, and Affiliations 

Start designing your poster by adding the title, the names of 
the authors, and the affiliated institutions. You can type or 
paste text into the provided boxes. The template will 
automatically adjust the size of your text to fit the title box. 
You can manually override this feature and change the size of 
your text.  
 
TIP: The font size of your title should be bigger than your 
name(s) and institution name(s). 
 
 

 
 

Adding Logos / Seals 
Most often, logos are added on each side of the title. You can 
insert a logo by dragging and dropping it from your desktop, 
copy and paste or by going to INSERT > PICTURES. Logos 
taken from web sites are likely to be low quality when 
printed. Zoom it at 100% to see what the logo will look like 
on the final poster and make any necessary adjustments.   
 
TIP:  See if your schoolÕs logo is available on our free poster 
templates page. 
 

Photographs / Graphics 
You can add images by dragging and dropping from your 
desktop, copy and paste, or by going to INSERT > PICTURES. 
Resize images proportionally by holding down the SHIFT key 
and dragging one of the corner handles. For a professional-
looking poster, do not distort your images by enlarging them 
disproportionally. 
 

 
 
 
 
 
 
 

Image Quality Check 
Zoom in and look at your images at 100% magnification. If 
they look good they will print well.  
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QUICK START (con t . )  
 

How to change the template color theme 
You can easily change the color theme of your poster by going 
to the DESIGN menu, click on COLORS, and choose the color 
theme of your choice. You can also create your own color 
theme. 
 
 
 
 
 
 
 
You can also manually change the color of your background by 
going to VIEW > SLIDE MASTER.  After you finish working on 
the master be sure to go to VIEW > NORMAL to continue 
working on your poster. 
 

How to add Text 
The template comes with a number of pre-
formatted placeholders for headers and 
text blocks. You can add more blocks by 
copying and pasting the existing ones or by 
adding a text box from the HOME menu.  

 

 Text size 
Adjust the size of your text based on how much content you 
have to present.  
The default template text offers a good starting point. Follow 
the conference requirements. 

 

How to add Tables 
To add a table from scratch go to the INSERT menu 
and click on TABLE. A drop-down box will help you 
select rows and columns.  

You can also copy and a paste a table from Word or another 
PowerPoint document. A pasted table may need to be re-
formatted by RIGHT-CLICK > FORMAT SHAPE, TEXT BOX, 
Margins. 
 

Graphs / Charts 
You can simply copy and paste charts and graphs from Excel 
or Word. Some reformatting may be required depending on 
how the original document has been created. 
 

How to change the column configuration 
RIGHT-CLICK on the poster background and select LAYOUT to 
see the column options available for this template. The 
poster columns can also be customized on the Master. VIEW > 
MASTER. 

 
How to remove the info bars 

If you are working in PowerPoint for Windows and have 
finished your poster, save as PDF and the bars will not be 
included. You can also delete them by going to VIEW > 
MASTER. On the Mac adjust the Page-Setup to match the 
Page-Setup in PowerPoint before you create a PDF. You can 
also delete them from the Slide Master. 
 

Save your work 
Save your template as a PowerPoint document. For printing, 
save as PowerPoint of ÒPrint-qualityÓ PDF. 
 

Print your poster 
When you are ready to have your poster printed go online to 
PosterPresentations.com and click on the ÒOrder Your PosterÓ 
button. Choose the poster type the best suits your needs and 
submit your order. If you submit a PowerPoint document you 
will be receiving a PDF proof for your approval prior to 
printing. If your order is placed and paid for before noon, 
Pacific, Monday through Friday, your order will ship out that 
same day. Next day, Second day, Third day, and Free Ground 
services are offered. Go to PosterPresentations.com for more 
information. 
 

Student discounts are available on our Facebook page. 
Go to PosterPresentations.com and click on the FB icon.  
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We have large graphs : 
¥! Web graph, Social graph, User-movie ratings graph, É 
 

 
We need to do intensive computation  on graphs: 
¥! PageRank, community detection, alternating least squares for collaborative 

filtering, shortest path, É 
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Vertex-centric streamlined processing 
¥! V-shards are cached 
¥! G-shards stream in 

¥! Execute update(v)  in parallel  

"1C1213;1/(
[1]  Kyrola, A., Blelloch, G., & Guestrin, C. (2012). GraphChi: Large-Scale Graph 
Computation on Just a PC. In OSDI. 

[2] Roy, A., Mihailovic, I., & Zwaenepoel, W. (2013). X-Stream: Edge-centric Graph 
Processing using Streaming Partitions. In SOSP. 

[3] Stanton, I., & Kliot , G. (2012). Streaming Graph Partitioning for Large Distributed 
Graphs. In KDD. 

[4] Cheng, J., Liu, Q., Li, Z., Fan, W., Lui, J. C. S., & He, C. (2015). VENUS: Vertex-
Centric Streamlined Graph Computation on a Single PC. In ICDE. 
Contact : Qin Liu ( qliu@cse.cuhk.edu.hk) 

Vertex-centric programming model : used by Pregel, GraphLab, GraphChi, É 
¥! Each vertex updates itself based on its neighborhood 
A seminar work, GraphChi[1]  

 
 
 

 
 
 

 
 
¥! Updated data on each vertex must be propagated to its neighbors through disk 

¥! Extensive disk I/O 
 
Our new system, VENUS: 

¥! Only store mutable values on vertices 
 
 

 
 
 
¥! Much less data access 

¥! Enable streamlined processing 
¥! Sacrifice little  expressiveness 
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for each iteration 
  for each vertex v 
    update(v) 
 
void update(v) 
  fetch data from each in-edge 
  update data on v 
  spread data to each out-edge��

void update(v) 
  fetch data from each in-edge 
  update data on v 
  spread data to each out-edge��
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Fig. 1. The VENUS Architecture

node v. Node u is called an in-neighbor of v, and v an out-
neighbor of u. (u, v) is called an in-edge of v and an out-
edge of u, and u and v are called the source and destination
of edge (u, v) respectively.

Most graph tasks are iterative and vertex-centric in na-
ture, and any update of a vertex value in each iteration
usually involves only its in-neighbors’ values. Once a vertex
is updated, it will trigger the updates of its out-neighbors.
This dynamic continues until convergence or certain condi-
tions are met. The disk-based approach organizes the graph
data into a number of shards on disk, so that each shard
can fit in the main memory. Each shard contains all needed
information for computing updates of a number of vertices.
One iteration will execute all shards. Hence there is a huge
amount of disk data to be accessed per iteration, which may
result in extensive IOs and become a bottleneck of the disk-
based approach. Therefore, a disk-based graph computation
system needs to manage the storage and the use of memory
and CPU in an intelligent way to minimize the amount of
disk data to be accessed.

VENUS, its architecture depicted in Figure 1, makes
use of a novel management scheme of disk storage and
main memory, in order to support vertex-centric stream-
lined processing. VENUS decomposes each task into two
stages: offline preprocessing and online processing. In the
offline preprocessing, VENUS processes the input graph and
constructs the graph storage on disk, which is organized as
a number of shards. For each shard, the edges with their
associated edge values are stored in the structure table,
while the vertex data, including mutable vertex values, are
kept in the value table. In the online processing, a graph
computation task is defined using an update function. Then
VENUS executes the update function on each vertex and
manages the interaction between CPU, memory, and disk.

2.2 Vertex-Centric Streamlined Processing

VENUS enables vertex-centric streamlined processing (VSP)
on our storage system, which is crucial in fast loading of
graph data and rapid parallel execution of update functions.
As we will show later, it has a superior performance with
much less data transfer overhead. Furthermore, it is more
effective in main memory utilization, as compared with
other schemes. We will elaborate on this in Section 2.3. To
support streamlined processing, we propose a new graph

11

10

7

5

8

12

9

6

4

21

3

Fig. 2. Example Graph

TABLE 1
Sharding Example: VENUS

Interval I1 = [1, 4] I2 = [5, 8] I3 = [9, 12]

v-shard I1 ! { 6, 7, 9, 10} I2 ! { 1, 3, 10, 11} I3 ! { 2, 3, 4, 6}

g-shard 7,9,10 " 1 6,7,8,11 " 5 2,3,4,10,11 " 9
6,10 " 2 1,10 " 6 11 " 10

1,2,6 " 3 3,10,11 " 7 4,6 " 11
1,2,6,7,10 " 4 3,6,11 " 8 2,3,9,10,11 " 12

S(I) 6 1 2
7 3 3
9 10 4

10 11 6

sharding method, a new graph storage scheme, and a novel
external graph computing model. Let us now provide a
brief overview of our sharding, storage, and external graph
computing model.

Graph sharding. Suppose the graph is too big to fit in the
main memory. Then how it is organized on disk will affect
how it will be accessed and processed afterwards. VENUS
splits the vertices set V into P disjoint intervals. Each inter-
val defines a g-shard and a v-shard, as follows. The g-shard
stores all the edges (and the associated attributes) with des-
tinations in that interval. The v-shard contains all vertices
in the g-shard which includes the source and destination
of each edge. Edges in each g-shard are ordered by desti-
nation, where the in-edges (and their associated read-only
attributes) of a vertex are stored consecutively as a structure
record. There are |V | structure records in total for the whole
graph. The g-shard and the v-shard corresponding to the
same vertex interval make a full shard. To illustrate the
concepts of shard, g-shard, and v-shard, consider the graph
with 12 vertices as shown in Figure 2. Suppose the vertices
are divided into three intervals: I1 = [1, 4], I2 = [5, 8], and
I3 = [9, 12]. Then, the resulting shards, including g-shards
and v-shards, are listed in Table 1.

In practice, all g-shards are further concatenated to form
the structure table, i.e., a stream of structure records (Fig-
ure 3). Such a design allows executing vertex update on the
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node v. Node u is called an in-neighbor of v, and v an out-
neighbor of u. (u, v) is called an in-edge of v and an out-
edge of u, and u and v are called the source and destination
of edge (u, v) respectively.

Most graph tasks are iterative and vertex-centric in na-
ture, and any update of a vertex value in each iteration
usually involves only its in-neighborsÕ values. Once a vertex
is updated, it will trigger the updates of its out-neighbors.
This dynamic continues until convergence or certain condi-
tions are met. The disk-based approach organizes the graph
data into a number of shardson disk, so that each shard
can Þt in the main memory. Each shard contains all needed
information for computing updates of a number of vertices.
One iteration will execute all shards. Hence there is a huge
amount of disk data to be accessed per iteration, which may
result in extensive IOs and become a bottleneck of the disk-
based approach. Therefore, a disk-based graph computation
system needs to manage the storage and the use of memory
and CPU in an intelligent way to minimize the amount of
disk data to be accessed.

VENUS, its architecture depicted in Figure 1, makes
use of a novel management scheme of disk storage and
main memory, in order to support vertex-centric stream-
lined processing. VENUS decomposes each task into two
stages: ofßine preprocessing and online processing. In the
ofßine preprocessing, VENUS processes the input graph and
constructs the graph storage on disk, which is organized as
a number of shards. For each shard, the edges with their
associated edge values are stored in the structure table,
while the vertex data, including mutable vertex values, are
kept in the value table. In the online processing, a graph
computation task is deÞned using an update function. Then
VENUS executes the update function on each vertex and
manages the interaction between CPU, memory, and disk.

2.2 Vertex-Centric Streamlined Processing

VENUS enables vertex-centric streamlined processing (VSP)
on our storage system, which is crucial in fast loading of
graph data and rapid parallel execution of update functions.
As we will show later, it has a superior performance with
much less data transfer overhead. Furthermore, it is more
effective in main memory utilization, as compared with
other schemes. We will elaborate on this in Section 2.3. To
support streamlined processing, we propose a new graph
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TABLE 1
Sharding Example: VENUS

Interval I 1 = [1 , 4] I 2 = [5 , 8] I 3 = [9 , 12]

v-shard I 1 ! { 6, 7, 9, 10} I 2 ! { 1, 3, 10, 11} I 3 ! { 2, 3, 4, 6}

g-shard 7,9,10" 1 6,7,8,11" 5 2,3,4,10,11" 9
6,10" 2 1,10" 6 11" 10
1,2,6" 3 3,10,11" 7 4,6" 11

1,2,6,7,10" 4 3,6,11" 8 2,3,9,10,11" 12

S(I ) 6 1 2
7 3 3
9 10 4

10 11 6

sharding method, a new graph storage scheme, and a novel
external graph computing model. Let us now provide a
brief overview of our sharding, storage, and external graph
computing model.

Graph sharding. Suppose the graph is too big to Þt in the
main memory. Then how it is organized on disk will affect
how it will be accessed and processed afterwards. VENUS
splits the vertices set V into P disjoint intervals. Each inter-
val deÞnes a g-shardand a v-shard, as follows. The g-shard
stores all the edges (and the associated attributes) with des-
tinations in that interval. The v-shard contains all vertices
in the g-shard which includes the source and destination
of each edge. Edges in each g-shard are ordered by desti-
nation, where the in-edges (and their associated read-only
attributes) of a vertex are stored consecutively as a structure
record. There are |V | structure records in total for the whole
graph. The g-shard and the v-shard corresponding to the
same vertex interval make a full shard. To illustrate the
concepts of shard, g-shard, and v-shard, consider the graph
with 12 vertices as shown in Figure 2. Suppose the vertices
are divided into three intervals: I 1 = [1 , 4], I 2 = [5 , 8], and
I 3 = [9 , 12]. Then, the resulting shards, including g-shards
and v-shards, are listed in Table 1.

In practice, all g-shards are further concatenated to form
the structure table, i.e., a stream of structure records (Fig-
ure 3). Such a design allows executing vertex update on the

#3012H79�� #I JKILMN�� #DJKOLPN�� #QJKRLIDN��

,Z+'(#) �� ?BFB98&\&9&
]B98&\&7&
9B7B]&\&:&

9B7B]B?B98&\&G��

]B?B^B99&\&_&
9B98&\&]&

:B98B99&\&?&
:B]B99&\&^&��

7B:BGB98B99&\&&F&
99&\&98&
GB]&\&99&

7B:BFB98B99&\&97��

VZ+'(#)�� 9̀�$ a]B?BFB98b&�� 7̀�$ a9B:B98B99b�� :̀ �$ a7B:BGB]b��

,A-128613079("1/G90/(
Run PageRank on Twitter graph 
¥! Faster due to less data access 
 

 
 
 

 
 
 

 
 
 

Clueweb12: web scale graph 
¥! 978 million nodes, 42.5 billion edges 
¥! 402 GB on disk 

¥! 2 iterations of PageRank 
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Fig. 1. PageRank
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Fig. 2. WCC & CD on the twitter-2010 graph
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Fig. 3. ALS on the Netßix and KDD-Cup graph
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Systems for graph computation: distributed  or single-machine ? 
 
Distributed systems: Pregel, GraphLab, GraphX, Giraph, É 

¥! Expensive clusters 
¥! Complex setup & configuration 
¥! Writing buggy distributed programs 

 
Single-machine systems: GraphChi[1], X-Stream[2], TurboGraph, FlashGraph, É 
¥! Store graphs on disk or SSDs 

¥! Graph computation on a commodity PC  (cheap, easy to program ) 
 
We can achieve competitive  results over distributed systems: 

PageRank on a Twitter graph (41M nodes, 1.4B edges) 
¥! Spark: 8.1min with 50 machines (each with 2 CPUs, 7.5G RAM)[3] 
¥! VENUS: 8 min on a single machine with quad-core CPU, 16G RAM 
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Disk storage (offline) 
¥! Split graph into shards and execute each in memory 
¥! Separate edge data and vertex data 

Computing model (online) 
¥! Cache vertex data 
¥! Load edge data sequentially 

¥! Execute update functions in parallel 

Each shard corresponds to an interval of vertices: 
G-shard: in-edges of nodes in the interval (immutable) 
V-shard: vertex values of all vertices in the shard (mutable) 

'.7X(73X(U-X701(HE/=72X/(
Two I/O efficient algorithms: 
1.! An extension of PSW[1]; 
2.! A merge-join between value table and v-shard 

Detailed in our paper[4]. 


