
Combining Factorization Model and Additive Forest for
Collaborative Followee Recommendation

Tianqi Chen, Linpeng Tang, Qin Liu, Diyi Yang, Saining Xie, Xuezhi Cao, Chunyang Wu,
Enpeng Yao, Zhengyang Liu, Zhansheng Jiang, Cheng Chen, Weihao Kong, Yong Yu

ACMClass@SJTU Team, Shanghai Jiao Tong University
800 Dongchuan Road, Shanghai 200240 China

{tqchen,TLP, lqhl, yangdiyi, xiesaining, cxz, chunyang, yaoenpeng,liuzhengyang,chencheng, jzhsh1735, kongweihao, yyu}@apex.sjtu.edu.cn

ABSTRACT
Social networks have become more and more popular in recent
years. This popularity creates a need for personalization services
to recommend tweets, posts (information) and celebrities organi-
zations (information sources) to users according to their potential
interest. Tencent Weibo (microblog) data in KDD Cup 2012 brings
one such challenge to the researchers in the knowledge discovery
and data mining community. Compared to traditional scenarios in
recommender systems, the KDD Cup 2012 Track 1 recommenda-
tion task raises several challenges: (1) Existence of multiple, het-
erogeneous data sources; (2) Fast growth of the social network with
a large number of new users, which causes a severe user cold-start
problem; (3) Rapid evolution of items’ popularity and users’ inter-
est.

To solve these problems, we combine feature-based factoriza-
tion models with additive forest models. Specifically, we first build
factorization models that incorporate users’ social network, action,
tag/keyword, profile and items’ taxonomy information. Then we
develop additive forest models to capture users’ activity and se-
quential patterns. Because of the additive nature of such models,
they allow easy combination of the results from previous factor-
ization models. Our modeling approach is able to utilize various
side information provided by the challenge dataset, and thus allevi-
ates the cold-start problem. The new temporal dynamics model we
have proposed using an additive forest can automatically adjust the
splitting time points to model popularity evolution more accurate-
ly. Our final solution obtained an MAP@3 of 0.4265 on the private
leader board, giving us the first place in Track 1 of KDD Cup 2012.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
Social Recommendation, Factorization Model, Additive Forest

1. INTRODUCTION
With the growth of social networking sites such as Twitter, Face-

book and Tecent Weibo, social networks have become part of peo-
ple’s daily life. People spend lots of time on social networks to
share their feelings and opinions with friends and get the latest in-
formation on their idols. However, the popularity of social net-
works also brings information overload; users need to pick out the
pieces of information they want from those they do not need. This
creates a need for personalization services. Recommender systems
that can recommend friends, tweets and other information to users
according to their potential interest can help users to find what they
need and improve the user experience. Tencent Weibo data[10]
in KDD Cup 2012 brings one such challenge. The task is to pre-
dict which users (or information sources) one user might follow.
Recommendation in social networks are different from traditional
recommendation tasks. Compared to traditional scenarios in rec-
ommender systems, social network recommendation raises several
challenges:

• Existence of multiple, heterogeneous data: Besides the train-
ing log data, the track1 data set in KDD Cup 2012 has social
network, user profile, user action, item taxonomy and other
information such as tag and keywords. These data can not be
directly used as training data, but they give extra information
about users’ profile and items’ properties. How to utilize the
rich information available in social network to enhance rec-
ommendation becomes an important issue.

• Fast growth of the social network with many new users; so-
cial networks grow fast, and new users are joining everyday.
In the track1 dataset, more than 70% users in the test query
do not have any training log history. This creates a severe
cold-start problem for the recommendation task.

• The rapid evolution of the social network: the users’ interest
in a social network changes frequently, as do item popularity.
We find that a model trained from one weeks’ data can have
much lower prediction accuracy for latter weeks than for the
same week. This rapid evolution property poses a challenge
for time-aware modeling.

To solve these challenges, we combine two kinds of useful mod-
els: feature-based matrix factorization and additive forest. We use
feature-based matrix factorization model to incorporate side infor-
mation such as users’ social network, action, keyword/tag and item-
s’ taxonomy information. We also develop additive forest models

to incorporate users’ profile, activity and sequential patterns. The
two kinds of models each have their own advantages : the factoriza-
tion models are good at handling sparse matrix data (such as users’
following information, keywords, etc.) and additive forest model-
s are more suitable for characterizing continuous features (such as
timestamp, user’s age, etc.). The two models complement each oth-
er and the combination produces more accurate predictions. With
respect to the three challenges, our solution gives the following
contributions: (1) Our model fully utilize the heterogeneous data
sources available; (2) We solve the cold start problem by user mod-
eling via profile and social network information; (3) We develop
a new time-aware model that can better capture items’ popularity
evolution.

Our final solution obtained an MAP@3 of 0.4265 on the private
leader board, which achieved the first place in Track 1 of KDD Cup
2012.

The remainder of the paper is organized as follows. We introduce
the general modeling methods used in our solution in Section 2.
We then show how to incorporate different kinds of information
available to build specific models in Section 3. Then experimental
results are presented in Section 4. And finally, we conclude this
paper in Section 5.

2. MODELING METHODS
In this section, we will introduce the various modeling meth-

ods we have used in the competition. We will first discuss the
loss function we have used, and then three modeling methods that
we found very useful—feature-based matrix factorization, bilinear
models and tree-based models.

2.1 Loss Function
In all the modeling methods in this section, for a user-item pair

(u, i), we will try to give a predicted rating r̂ui that indicates the
preference of u towards i. The loss function specifies how close
our predictions are to the actual result, and all learning methods try
to minimize the loss on the training set.

2.1.1 Classification
Since each record in the training set only has a binary result (ac-

cept or reject), it is natural to view it as classification problem. We
use rui ∈ {−1,+1} to denote whether user u accepts the recom-
mendation of item i. The 0-1 classification loss is presented in the
following equation

L0−1
ui = δ(ruir̂ui), δ(x) =

{
0 x ≥ 0
1 x < 0

(1)

Where δ is the 0-1 decision function. Since δ is not differentiable,
we usually replace it by a convex surrogate loss function, which
we denote by C. There are two popular choices of surrogate loss
functions. One is hinge loss, which corresponds to max-margin
optimization:

C(x) = max(1− x, 0) (2)

Another is logistic loss, which corresponds to maximum likelihood
estimation of maximum entropy model:

C(x) = ln(1 + e−x) (3)

We note that these surrogate loss function can also be used for the
ranking loss in later subsections. We will keep the notation C for
surrogate loss function in our discussions in the following subsec-
tions.

2.1.2 Pairwise Ranking
In this task, we need to rank the top-3 items for each user, so

the task is actually a learning to rank task. There has been lots
of previous work on collaborative ranking[11][13]. Most pairwise
ranking models try to minimize the number of reverse-pairs. So for
each user u, if she rates i higher than j, we expect that the model
will give r̂ui > r̂uj . The loss function for u is:

L0
u =

∑
(i,j):rui>ruj

δ(r̂ui − r̂uj) (4)

which is equivalent to maximizing the empirical AUC (Area under
curve).

(4) can be very difficult to optimize because of its non-continuity.
So we smooth it with

Lu =
∑

(i,j):rui>ruj

C(r̂ui − r̂uj) (5)

When a user has n positive ratings and m negative ratings, by (5)
we need mn pairs to evaluate the pairwise ranking loss. This can
be costly when a user has many ratings. In this case, we just sample
a subset of the pairs.

Pairwise ranking models outperform classification models sig-
nificantly in our experiments. This may be partially explained by
the fact that this method automatically rebalances the data which
contains far more negative ratings than positive ones. Note that
when we sample a pair, it has exactly one positive rating and one
negative rating.

2.1.3 LambdaRank: Listwise Ranking
Although pairwise ranking can effectively optimize the AUC, it

may not be suitable for optimizing many other ranking measures.
In KDD Cup 2012 Track 1, for example, MAP@3 is used as the
ranking measure, which emphasizes the items ranked at the top of
the list. LambdaRank [1] is a listwise learning method that can
effectively optimize such complex measures. Specifically, the loss
function becomes

Lu =
∑

(i,j):rui>ruj

∆ijC(r̂ui − r̂uj) (6)

where ∆ij is the difference in the ranking measure of two ranking
lists obtained by the current predictions. Let Lij be the ranking list
by current predictions where we put i before j (we may swap the
positions of i and j if i is ranked after j), and Lji be the list where
we put i after j. ∆ij is just the difference in the ranking measure
between Lij and Lji. For our task, we define ∆ij as difference of
MAP (mean average precision, MAP@∞), instead of MAP@3.
This is because MAP@3 ignores the items not on the top-3 list, and
will miss potential useful pairs. MAP LambdaRank gives nonzero
∆ij for all pairs, and is still closer to MAP@3 than the pairwise
approach.

2.2 Feature-based Matrix Factorization
Factorization models are an important class of model for collab-

orative filtering. The plain matrix factorization model[9] predicts
r̂ui by

r̂ui = pT
uqi (7)

where pu,qi are both low-dimensional vectors (typically of 64 or
128 dimensions), denoting the latent factors of user u and item i,
respectively. Combined with any of the loss functions proposed
above, we can obtain a baseline method for the contest.

In the data set, aside from the training set, we also have many
kinds of side information about the users, the items and their in-
teractions. We use a general methodology to incorporate them into
our model. Take user modeling for example. We can group the
users into many classes using their profiles and behaviors, and each
user may belong to a subset of the classes. For example, the users
with ages from 13 − 18 belong to the “adolescent class”, the fe-
male users belong to the “female class”, and the users who have
followed Kaifu Lee belong to the “Kaifu Lee’s fans class”. Use
C(u) to denote the classes u belongs to, we can build a class aware
factorization model by adding the following user latent factor:

p′u =
∑

c∈C(u)

α(u)
c pc (8)

where α(u)
c is u’s feature weight coefficient to class c, and pc is the

latent factor for the category (to be learned).
We may roughly distinguish between two kinds of user-related

data available in the data sets. The first kind is categorical fea-
tures, such as gender/age/taxonomy, and one user has at most one
non-zero coefficient in a group of features. The second kind is the
keyword-like features, and a user can have many non-zero coeffi-
cients in a group. For example, the items a user has followed form
such a group of features. For such keyword-like features, it is good
practice to normalize the coefficient vector α to ensure ‖α‖2 = 1.
In this way, Equation 8 encompasses the famous “user feedback”
model, which is also known as SVD++[7].

In addition to the user related features, we can also incorpo-
rate item features and dyadic features (i.e., the features for the pair
(u, i)), and build a full feature-based matrix factorization model[2]
as follows:

r̂ui =

 ∑
c∈C(u)

α(u)
c pc

T ∑
c∈C(i)

β(i)
c qc

+
∑

c∈C(u,i)

γ(u,i)
c gc

(9)
Here α, β, γ refer to the user/item/dyadic feature coefficients, re-
spectively; p, q refer to the latent factors of user/item features; and
g refers to the dyadic bias term. We have implemented a general
solver for this model and built specific models via incorporation of
useful features.

2.2.1 Efficient Parameter Training
To update the model, we use the following update rule to do

stochastic gradient descent training

pc ← pc + η

êαc

 ∑
j∈C(i)

βjqj

− λ1pc

 (10)

qc ← qc + η

êβc
 ∑

j∈C(u)

αjpj

− λ2qc

 (11)

gc ← gc + η (êγc − λ3gc) (12)

Here ê = −∂ŷl(y, ŷ) the negative gradient of the loss function over
predicted value. η is the learning rate and the λs are regularization
parameters that define the strength of regularization.

The time complexity of the stochastic gradient descent training is
O(NK̄), whereN is number of instances in the training procedure
and K̄ is number of nonzero features in each instance. In this task,
we can usually have a large K̄(about 20 − 100) introduced by
each user since we need to incorporate users’ follows, actions, and
keywords.

To speed up training with many user features, we use a speedup
technique for user feedback information. The update of each pc

after one step without regularization is

∆p′c = ηêαc

 ∑
j∈C(i)

βjqj

 (13)

Using the definition of p′u in Equation 8, the resulting difference in
p′u is given by

∆p′u = ηê

 ∑
c∈C(u)

α2
c

 ∑
j∈C(i)

βjqj

 (14)

Given a group of samples with the same user, to get a new p′u, we
do not need to update each pc. Instead, we only need to update p′u
using Equation 14. Furthermore, there is a relation between ∆p′u
and ∆pc

∆pc =
αc∑

k∈C(u) α
2
k

∆p′u (15)

These relations can be used to reduce the complexity of the training
algorithm to O(N(K̄ − K̄u) + |U |K̄u). Where K̄u is the average
number of user features and |U | gives number of users in the train-
ing set. This can greatly reduce the computation cost when a large
amount of user information is incorporated into the model.

2.3 Bilinear Models
The bilinear model is also a powerful method for modeling tab-

ular data[12]. It can be incorporated into feature-based matrix fac-
torization via global feature definition, but it can be viewed as an
alternative to the factorization model, so we discuss it in an inde-
pendent section. It is actually closely related to matrix factorization
models. Bilinear models give

r̂ui = xTuWyi (16)

where xu, yi are the feature vectors of u and i, respectively, andW
is the parameter matrix in the model.

In the matrix factorization model, r̂ui = pu · qi. Let wui =
pu · qi, and let

xu = (0, . . . , 0, 1
u-th
, 0, . . . , 0),

yi = (0, . . . , 0, 1
i-th
, 0, . . . , 0),

then xTuWyi = wui = pu · qi, so bilinear models actually en-
compass matrix factorization models. Actually, matrix factoriza-
tion models can be seen as a restricted form of bilinear models
where the parameter matrix is required to be low rank. Compared to
matrix factorization models, bilinear models have more predictive
power, but also have more parameters and can lead to over-fitting.
We only use bilinear models when W is not large.

2.4 Additive Forest Models

2.4.1 Tree-based Models
Tree-based models partition the feature space along the axes into

a set of rectangles, and fit a simple model (in our case, a constant) in
each one. A popular tree-based method called CART, is described
in [5], Chapter 9.

Compared to factorization models, tree-based models can cap-
ture complex and sudden changes in the interaction between fea-
tures and response variables automatically. For example, when in-
corporating the user age into the matrix factorization model, we

item 1

Forest 1

Forest 2

item 2 item k
item i: Kaifu LEE

Major=IT?

noyes

noyesnoyes

noyesnoyes

noyes

Occupation=Student? Age<25?

Age>18?

Age>12?

Occupation=Student?

noyes

Gender=Female?

Like Dislike

Figure 1: Illustrative Example of Additive Forest

have to manually partition the feature into many intervals and set
up a user feature latent factor for each age group. Too many age
groups may lead to too many parameters and over-fitting, while too
few age groups might fail to fully capture the correlation and utilize
the feature. Tree-based models automatically solve this issue; each
rectangle is further partitioned if and only if the partition results in
enough loss reduction and has enough supporting samples.

In addition, tree-based models only use a few parameters com-
pared to matrix factorization or bilinear models, and we can easily
control the complexity of the tree by its depth and number of sup-
porting samples on each leaf. So tree-based models hardly ever
over-fit, which can be a huge advantage compared to other models.

2.4.2 Additive Tree Methods
In many cases, a single tree is not powerful enough to efficiently

describe our data. In particular, suppose we have data points gen-
erated by a linear model with m input variables x1, · · · , xm. The
output variable y = x1 + x2 + · · ·xm. Although y can be perfect-
ly modeled by linear regression, when using a single tree to fit the
data, the tree size needs to grow exponentially to m in order for the
model to be accurate.

Additive trees augment the power of single tree models by mod-
eling the response with the sum of a series of trees.

y =

S∑
s=1

fs(x) (17)

where each fs represents a tree model.
In the above example, if tree fs partitions the input space only

w.r.t xs, then we just need m trees, each of size O(1/ε) to recover
the data with relative error ε. So additive tree models can be much
more efficient than a single tree model.

2.4.3 Additive Forest
In our scenario, there are complex user-item interactions. For

example, a basketball star may be followed by lots of young men,
while a handsome pop singer may be more favored by young wom-
en. It is hard to capture all these kinds of information using a sin-
gle tree. We use an additive forest model to resolve the problem.

Specifically, our model can be expressed by the following equation

r̂ui =

S∑
s=1

fs,root(i,s)(xui) (18)

Here root(i, s) is the root for all ratings related to i in the s-th
tree. For each s, the set Fs = {fs,r|∃i, r = root(i, s)} forms
a forest with roots specified by root(i, t). A special case is when
root(i, s) = i, then our model becomes a sum of a series of forests
with instances for each item to form trees. Figure 1 gives an illus-
trative example of an additive forest model.

r̂ui =

S∑
s=1

fs,i(xui) (19)

This model can capture the specific properties of each item, and
build separate trees for each of them. It also allows different tree
size according to the number of supporting instances, which can be
tuned by the building algorithm. We also emphasize that we can
define root(i, s) to be the taxonomic parents of each items; this
allows us to make use of taxonomy information and mine the shared
properties between items in the same category. When root(i, s) are
same for all items, then we fall back to the additive tree model.

2.4.4 Optimization of Tree-based Models
In this section we will briefly discuss how to optimize the tree-

based models, including additive tree and additive forest, using
Newton’s method. Readers are referred to [4] for the details (see
the LogitBoost section). The basic criterion for optimizing such
models is also maximum likelihood, as in feature-based matrix fac-
torization models. For simplicity here we first consider the re-
gression/classification problems, and ranking problems will be dis-
cussed later. The optimization objective is (see [5]):

min

n∑
i=1

l(yi, ŷi) + α|T | (20)

where l(·, ·) denotes the loss function (for example, for logistic loss
l(y, ŷ) = ln(1+e−yŷ)) and |T | denotes the size of the trees/forests
which controls model complexity. .

To exactly optimize (20), even for a single tree model, would
be NP-Hard, so we use a greedy algorithm instead. Each time we

find a node and choose a split line across some axis that would
reduce the loss most. So we may gradually grow the tree until the
leaves reach a maximum depth or the support of each leaf is below
a specified threshold. Then we shrink the tree by merging the nodes
that reduce the loss least, until the smallest loss reduction is larger
than α. This process will greedily optimize (20).

Now the central problem is, given a node and some axis (fea-
ture), how to efficiently choose the split-line that would reduce the
loss most. We use Newton’s method for this purpose. Suppose the
support for the current node is

(x1, y1, ŷ1), · · · , (xn, yn, ŷn)

with x1 < x2 < · · · < xn, where xi is the feature value, yi the
response value and ŷi the current predicted value. Let

gi =
∂

∂ŷi
l(yi, ŷi), hi =

∂2

∂ŷ2i
l(yi, ŷi)

Denote li(d) = l(yi, ŷi + d), then by Taylor expansion

li(d) = l(yi, ŷi) + gid+
1

2
hid

2 + o(d2) (21)

Now assume we have xs ∈ [xk, xk+1), and we wish to minimize∑k
i=1 li(d1) +

∑n
i=k+1 li(d2). Using Newton’s method we have

d∗1 = −
∑k

i=1 gi∑k
i=1 hi

, d∗2 = −
∑n

i=k+1 gi∑n
i=k+1 hi

(22)

with the approximate loss reduction
∑k

i=1
1
2
hid

2
1+
∑n

i=k+1
1
2
hid

2
2.

So we only need to sweep through the data points in the order
of xi, keeping a record of

∑k
i=1 gi,

∑k
i=1 hi,

∑n
i=k+1 gi and∑n

i=k+1 hi. This can be done in O(n) time, assuming the data
points are pre-sorted.

Assuming there are N samples in total with K features, since
additive tree/forest models typically have constant depth (4 ∼ 10)
in our experiments, the total time for constructing a tree (or forest)
would be O(NK). We may further accelerate the algorithms by a
subsampling technique. When constructing additive trees, in each
iteration, we only sample a subset of the data points to construct
the tree. This gives the stochastic gradient boosting method[3]. If
we use ρ for sample ratio, then the time for constructing a tree is
only O(ρNK). Finally, for ranking problems, we compute gi, hi

from the pairwise ranking or LambdaRank as in section 2.1.2 and
2.1.3.

3. INFORMATIVE MODELS
We have discussed the general modeling techniques in the previ-

ous section. In this section, we show how to apply these techniques
to build specific models to utilize available information.

3.1 Social Network
One of the most important user preference information sources

in the provided dataset is users’ social network data. Users can
choose to follow friends or celebrities. This information may cor-
relate with which recommendations the user will accept in the fu-
ture. For example, a user who follows lots of football stars may be
more likely to accept of recommendations of other football stars.
There are two kinds of modeling approach to use this data. The
first approach is a bilinear model:

r̂ui =
1√
|F (u)|

∑
j∈F (u)

Wij + bi (23)

Where F (u) is the set of items followed by u. It directly models
the correlation between i and j by Wij . The second approach is a
factorized user feedback model:

r̂ui =

 1√
|F (u)|

∑
j∈F (u)

pj

T

qi + bi (24)

This model can be viewed as a factorized version of the bilinear
model. It contains fewer parameters than the bilinear model and can
learn the latent topic of items through the factorized parameters.
This model works better than the bilinear model in our experiments.

Besides users’ follow data, we can also get users’ action data. A
user can retweet, @ and comment on other users. The difference
is that a user’s action has counting information. Fanatic football
fans may retweet football stars many more times than other persons
they follow. We take this into account, and include users’ action
information in our model

r̂ui =

 1√
|F (u)|

∑
j∈F (u)

pj +
1

‖αu‖2

∑
j∈A(u)

αu,jyj

T

qi + bi

(25)
Where A(u) is the set of items user u has actions with. αu,j is the
number of actions user u has over j. We use `2 norm to normalize
the weight. The model in Equation 25 is a special case of Equa-
tion 9, and we can train the model using the methods discussed in
section 2.2.1.

3.2 Age and Gender
The age and gender of a user could also indicate his/her inter-

ests to us. For example, a teenage boy usually likes sports and is
more likely to follow a sports star, while a teenage girl may like
music better and is more likely to follow the music stars. So users
from different age and gender groups might have different prefer-
ences. We could use this information by introducing latent factors
for these groups into the user latent factors, but as the number of
groups is quite small, we find it is better to directly use the bilinear
models.

We first partition the user ages into k bins, and then split each
bin by gender, so there are in total 2k groups. Define ag(u) : u 7→
{1, · · · , 2k} that maps u to the group he/she belongs to. We use
eag(u) to denote a base vector with 1 on the ag(u)-th component
and 0 on every other component. Use βi to denote the coefficient
vector for item i’s latent factors. Note that in addition to a latent
factor for each item, we also have latent factors for the keyword-
s of the items (refer to section 3.3). So βi would have non-zero
components that correspond to its identity and its keywords, and
possibly other item features. Then the bilinear model utilizing the
user’s age/gender information is as follows:

r̂′ui = r̂ui + eag(u)Wβi (26)

Here W is the parameter matrix defined in Section 2.3.
In the bilinear modeling of age and gender, we use the same par-

tition by age and gender for all items. However, since different
items may be favored by different kinds of people, a uniform par-
tition may not be perfect for all the items. We use additive forest
model to solve this problem (for simplicity we omit the item key-
word feature in this model),

r̂′ui = r̂ui +

S∑
s=1

fs,root(i,s)(xag(u)) (27)

Where xag(u) is a two dimensional feature vector that contains the
age and value of u. This model can cut and select related age inter-

Bias

Bias

Timet1 t2 t3 t4

t1 t2 t3 t4 Time

Predefined Uniform Cutting

Dynamically Learned Cutting

(a) Temporal Model via Item Time Bin

Bias

Bias

Timet1 t2 t3 t4

t1 t2 t3 t4 Time

Predefined Uniform Cutting

Dynamically Learned Cutting(b) Temporal Modeling via K-piece Step Function

Figure 2: Comparison of Two Temporal Models

vals and genders for each item, and overcome the disadvantage of
bilinear model. In our final model we first use (26) in the factoriza-
tion model and then boost (27) with additive forest models.

3.3 Keywords and Tags
The data sets also provide us with a lot of descriptive keywords

for each user and item. For each user, we know the tags she put on
herself and the keywords extracted from her tweets. Additionally,
for each item, we know the keywords extracted from her descrip-
tion given by the Tencent Weibo officials. These keywords and tags
describe the characteristics of the users and the items, so we also
introduce them to the latent factors. Take the user latent factor for
example,

p′u = pu +
1

‖wu‖2

∑
j∈K(u)

wu,jyj (28)

where K(u) denote the set of keywords for user u, and wu,j the
weight of keyword j for u. As we have mentioned, there are in
total 4 sets of such keyword/tag features, and we add all of them to
the user/item latent factors in the style of (28).

3.4 Taxonomy Information
In the provided data set, we also know the taxonomy information

for each item. Specifically, we know i belongs to a depth-4 hier-
archical category system, so i ∈ c1(i) ⊂ c2(i) ⊂ c3(i) ⊂ c4(i).
Naturally, we expect that items in the same category would have
similar latent factors. We address this issue by setting up latent
factors for the categories and sharing these latent factors among all
items in the category[6]. So the latent factor for item i is:

q′i = qi + qc1(i) + qc2(i) + qc3(i) + qc4(i) (29)

Note that the solution for this system is clearly undetermined be-
cause we could subtract a constant vector from the latent factor of
a category and add that constant to the latent factors of all the items
in that category, and the predictions would remain the same. This
problem is solved by the `2 regularization on all the latent factors.

3.5 Temporal Dynamics
Temporal information plays a very important role in collabora-

tive filtering models. Users’ preference and items’ popularity can

change with time. Since users’ behavior information is extreme-
ly sparse in this task, it is hard to model users’ preference change.
However, we can model items’ popularity change using time-aware
model,

r̂′ui(t) = r̂ui + bi,binId(t) (30)

Where binId is a function that maps timestamp into corresponding
time bin. This approach follows the methodology in Koren[8], and
showed significant performance improvement in last year’s KDD
Cup[2]. The basic idea is to learn a localized item temporal bias in
each time bin to capture the recent popularity of items. However,
this approach is not perfect: the time bin size is fixed and needs to
be tuned each specific dataset.

In the real world scenario, the popularity change of items can
be different. Consider the following example: a football star may
suddenly became popular in a recent week due to his perfect play
in the European Cup; a pop star stays hot for long time and her
popularity has not changed recently; a politician was rocked by a s-
candal a month ago and becomes less popular this month. To better
model their popularity patterns, we need to use weeks as time bin
unit for the football star, while months are more desirable for the
politician. This example shows that we need to use different model
settings for different items. With these observations, we propose a
new temporal dynamics model as follows

r̂′ui(t) = r̂ui + fi(t) (31)

Where fi(t) is a k-piece step function. In the training step, we need
to choose the function fi to optimize the loss function. We compare
the new approach with the old one in Figure 2. Figure 2(a) gives
an example of a time bin model, with a predefined time bin size.
Figure 2(b) shows an example of a new k-piece step function. The
splitting points are adjusted during the training process to optimize
the loss function. This makes our new model more flexible than
approaches with a predefined bin size.

To further improve the model, we change the single step function
to a sum of S step functions

r̂′ui(t) = r̂ui +

S∑
s=1

fs,i(t) (32)

This new model can express more complex temporal patterns than
the traditional fixed-bin approach as (30). It can be viewed as a spe-
cial case of the additive forest model introduced in Section 2.4.3.
We can use gradient boosting to find a good solution in functional
space.

3.6 User Activity
Different types of users may have different kinds of microblog

activity. For example, high school students may tend to use mi-
croblogs on the weekend since they are occupied by courses on
weekdays. Our assumption is that the time activity pattern of user-
s’ microblog usage correlates to their identities and preferences.
Unfortunately, the only timestamp information we can get is users’
accept/reject activity, which is quite sparse. Nevertheless, we make
use of this information to build a model that uses activity pattern-
s. Specifically, we calculate the proportion of each users’ activity
which occurs during the weekends.

xu =
|Rweekend(u)|
|R(u)| (33)

WhereRweekend(u) is the set of user u’s accept/reject actions dur-
ing the weekend, and R(u) is the set of all u’s actions. Similarly,
we also build a histogram of users’ activity over the 24 hours in

0 50 100
−4

−3

−2

−1

0

1

∆ t (sec)

f(
∆

t)

(a) ∆t = tnext − tcurr

0 50 100
−0.4

−0.2

0

0.2

0.4

∆ t (sec)

f(
∆

t)

(b) ∆t = tcurr − tprev

Figure 3: Single Variable Pattern Functions Learned

a day. These feature is then added into the additive forest mod-
el to improve the prediction. This modeling approach provides a
minor improvement in the performance. However, we believe that
if we can access more activity information such as timestamp of
tweet actions, user activity modeling could potentially give more
improvement.

3.7 User Sequential Patterns
Users’ behaviors in a social network are not identical nor inde-

pendent. Instead, they are series of related actions. Some users
may continually reject recommendations until they find a satisfy-
ing one. Users’ patience may also be changed by how many unde-
sirable recommendations they have received recently. To capture
these sequential patterns, we utilize an additive tree model

r̂′ui(t) = r̂ui +

S∑
s=1

fs(xseq) (34)

The feature xseq is intended to capture the local sequential fea-
ture of this recommendation, and it includes the time difference
between the current recommendation record and the previous/next
k records.1 We also include each users’ average click frequency
within a session (a session is defined to be a time interval when a
user has continual actions) into xseq . The advantage of a tree-based
model is that it automatically learns the non-linear relation of these
sequential features to the acceptance rate.

Intuitively, the sequential features can capture cases when a user
has found an item she likes, accepts it and stops processing rec-
ommendations. The features might also capture whether a user’s
current patience (reflected in her click frequency) will affect her ac-
ceptance rate. Since these sequential patterns are not item specific,
we use additive trees (rather than additive forests) in our model for
them.

To give illustrative examples of relationships between sequential
features and prediction. We train several single variable predictors
that take one sequential feature ∆ as input and output f(∆t)

r̂′ui(t) = r̂ui + f(∆t), f(∆t) =
S∑

s=1

fs(∆t) (35)

We plot two of the single variable functions learned in Figure 3.
Here tcurr , tnext, tprev are timestamps of current, next and pre-
vious action respectively. Figure 3(a) can be intuitively explained
by the possibility that some users may stop exploration when they
find satisfying items. Figure 3(b) shows an interesting relationship;
it may be interpreted as when users click too fast or too slow, it is
less likely to be an acceptance. It may also related to a user’s cur-
rent patience. We also tried to include sequential features in matrix
1In our experiments we include the time difference between current
record and the next 4 records the previous 2 records.

factorization models or linear models. However, the tree-based ap-
proach turns out to be the most natural and effective way to handle
these features in our experiments.

3.8 Final Joint Predictor
For completeness, we give the equation of our final predictor in

this section. Our final predictor is as follows.

r̂ui =

 ∑
c∈C(u)

α(u)
c pc

T ∑
c∈C(i)

β(i)
c qc

+

∑
c∈C(u,i)

γ(u,i)
c gc +

S∑
s=1

fs,root(s,i)(xui)

(36)

This is a combination of feature-based matrix factorization and an
additive forest model. The detailed configuration of features are
already given by previous subsections. To train this model, we can
first train the factorization part and keep the prediction as base line,
then use gradient boosting to train the additive forest part. This
model allows us to utilize the advantages of the two models, and
make accurate predictions.

4. EXPERIMENTS

4.1 Experiment Setup
As it is time consuming to submit the predictions to the result of

one method, we find it very important to make a reasonable valida-
tion set at the early stage of the competition. Note that the training
set is collected from October 11th, 2011 to November 11th, 2011,
and the test set from November 11th to November 30th. So there
are in total 30 days of training data. Since the test comes right after
the whole training set, we also make the validation set right after
our private training set. Specifically, we divide the 30 days evenly
into 5 periods (so 6 days for each period) and take the first 4 as
the training set S and the last period as the validation set V . In
the experiments, we first train the models on the training set, use
the validation result to determine the learning parameters (mainly
learning rate and number of rounds), and then apply the same pa-
rameters to the models trained on the whole data set S +V and get
the predictions on the test set.

We conduct our experiments in an incremental way. We add each
type of information to our model, and train a joint model using all
the information. For the factorization models, we use feature-based
matrix factorization to train the joint model. For the models that in-
clude an additive forest, we use the factorization model as a starting
point and add forests to improve the results. For all the factoriza-
tion models, the number of latent factor is set to 128. The learning
rate is set to be sufficiently small for the model to converge. Al-
l the regularization parameters are set to 0.004. We use pairwise
rank to train factorization models and use LambdaRank in additive
forest training. Classification loss is not as good as learning to rank
methods and is not used in our experiments.

We have tried ensemble methods but failed to improve the final
joint model. So we do not include ensemble methods in our ex-
periments. This is an interesting fact, it indicates that in this task,
how to better utilize information is more important than combine
different predictors using the same piece of information.

4.2 Results and Discussions
Table 1 shows the results of different methods on the data set. We

can find that the results on the validation set are largely consistent
with those on the test set. If one method improves the results of

No. model validation MAP@3 public MAP@3 private MAP@3

1 item bias 39.0% 34.6% 34.0%
2 1 + user follow + user action 42.1% 36.7% 35.8%
3 2 + user age/gender 43.5% 38.0% 37.2%
4 3 + user tag/keyword 44.2% 38.5% 37.6%
5 4 + item taxonomy 44.4% 38.7% 37.8%

6 5 + temporal dynamics 44.7% 39.0% 37.9%
7 6 + user activity/gender/age(addtive forest) 44.9% 39.1% 38.0%
8 7 + user sequential patterns 51.4% 44.2% 42.7%

Table 1: MAP@3 of different methods

the other on the validation set, it usually improves on the test set
also, although the improvement is often less significant. This is
expected. Since the social network is an evolving system, the more
distant the future, the more difficult it will be to predict the user
behavior.

Our method significantly improves the experimental results. We
emphasize that the incremental approach here does not give an ex-
act measurement of the impact of each method since the informa-
tion of different models may correlate with each other, and it is
extremely hard to increase the performance of later models by even
a slight amount. The experimental results show that user modeling
greatly helps the prediction. This is due to the sparsity of users’
training information.

It is worth mentioning that our proposed new temporal dynamics
model gives 0.3% improvement on MAP@3, while all our other
trials of traditional time-aware models fail to yield improvement.
This shows our model is potentially better than previous time-aware
collaborative filtering methods. We will further study its properties
in future work.

The combination of additive forest and factorization models yield-
s the best performance we can get. While each of them is power-
ful enough as a stand alone model, they complement each other;
feature-based matrix factorization can easily handle sparse matrix
information such as a user social network, while an additive forest
is good at dealing with continuous features such as age and times-
tamps. While it is possible to build a complex factorization model
that can replace additive forest via feature engineering, we believe
that combination of the two models is a more natural way to pro-
duce state-of-art results in this task.

5. CONCLUSION
In this paper, we describe our solution to followee recommen-

dation to the Tecent Weibo dataset for KDD Cup 2012. We study
different extensions of factorization models to handle information
such as social network, user action and item taxonomy. We de-
velop additive forest models to incorporate user profile, activity
and sequential behavior patterns. We also propose a new time-
aware model to capture items’ popularity changes. Our final solu-
tion combines feature-based matrix factorization and additive forest
models, which gives us the advantages of both models. Experimen-
tal results on track1 data sets demonstrated the effectiveness of the
various techniques and models proposed by this paper.

Acknowledgement
The team is supported by grants from NSFC-RGC joint research
project 60931160445.

6. REFERENCES

[1] C. Burges. From ranknet to lambdarank to lambdamart: An
overview. Learning, 11:23–581, 2010.

[2] T. Chen, Z. Zheng, Q. Lu, X. Jiang, Y. Chen, W. Zhang,
K. Chen, Y. Yu, N. Liu, B. Cao, L. He, and Q. Yang.
Informative ensemble of multi-resolution dynamic
factorization models. In KDD-Cup Workshop, 2011.

[3] J. Friedman. Stochastic gradient boosting. Computational
Statistics & Data Analysis, 38(4):367–378, 2002.

[4] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic
regression: a statistical view of boosting (with discussion and
a rejoinder by the authors). The annals of statistics,
28(2):337–407, 2000.

[5] J. Friedman, T. Hastie, and R. Tibshirani. The elements of
statistical learning, volume 1. Springer Series in Statistics,
2001.

[6] N. Koenigstein, G. Dror, and Y. Koren. Yahoo! music
recommendations: modeling music ratings with temporal
dynamics and item taxonomy. In Proceedings of the fifth
ACM conference on Recommender systems, RecSys ’11,
pages 165–172, New York, NY, USA, 2011. ACM.

[7] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proceeding of
the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’08, pages
426–434, New York, NY, USA, 2008. ACM.

[8] Y. Koren. Collaborative filtering with temporal dynamics. In
Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD
’09, pages 447–456, 2009.

[9] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42, August
2009.

[10] Y. Niu, Y. Wang, G. Sun, A. Yue, B. Dalessandro, C. Perlich,
and B. Hamner. The Tencent Dataset and KDD-Cup’12. In
KDD-Cup Workshop, 2012.

[11] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. Bpr: Bayesian personalized ranking
from implicit feedback. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, pages
452–461. AUAI Press, 2009.

[12] J. Tenenbaum and W. Freeman. Separating style and content
with bilinear models. Neural computation, 12(6):1247–1283,
2000.

[13] M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. Cofi rank
- maximum margin matrix factorization for collaborative
ranking. In J. Platt, D. Koller, Y. Singer, and S. Roweis,
editors, Advances in Neural Information Processing Systems
20, pages 1593–1600, Cambridge, MA, 2008. MIT Press.

