
SAND: A Fault-Tolerant Streaming

Architecture for Network Traffic Analytics

Qin Liu, John C.S. Lui 1

Cheng He, Lujia Pan, Wei Fan, Yunlong Shi 2

1The Chinese University of Hong Kong

2Huawei Noah’s Ark Lab

1

Introduction

2

Motivation

Network traffic arrives in a streaming fashion, and should be
processed in real-time. For example,

1. Network traffic classification

2. Anomaly detection

3. Policy and charging control in cellular networks

4. Recommendations based on user behaviors

3

Challenges

1. A stream processing system must sustain high-speed
network traffic in cellular core networks

I existing systems: S4 [Neumeyer’10], Storm 1 ...
I implemented in Java: heavy processing overheads
I cannot sustain high-speed network traffic

2. For critical applications, it is necessary to provide
correct results after failure recovery

I high hardware cost
I cannot provide “correct results” after failure recovery
I at-least-once vs. exactly-once

1http://storm.incubator.apache.org/
4

http://storm.incubator.apache.org/

Challenges

1. A stream processing system must sustain high-speed
network traffic in cellular core networks

I existing systems: S4 [Neumeyer’10], Storm 1 ...
I implemented in Java: heavy processing overheads
I cannot sustain high-speed network traffic

2. For critical applications, it is necessary to provide
correct results after failure recovery

I high hardware cost
I cannot provide “correct results” after failure recovery
I at-least-once vs. exactly-once

1http://storm.incubator.apache.org/
4

http://storm.incubator.apache.org/

Contributions

Design and implement SAND in C++:

• high performance on network traffic

• a new fault tolerance scheme

5

Background

6

Background

Continuous operator model:

• Each node runs an operator with in-memory mutable state

• For each input event, state is updated and new events are
sent out

Mutable state is lost if node fails.

7

Example: AppTracker

• AppTracker: traffic classification for cellular network
traffic

• Output traffic distribution in real-time:

Application Distribution

HTTP 15.60%
Sina Weibo 4.13%

QQ 2.56%
DNS 2.34%

HTTP in QQ 2.17%

8

Example: AppTracker

Under the continuous operator model:

• Spout: capture packets from cellular network

• Decoder: extract IP packets from raw packets

• DPI-Engine: perform deep packet inspection on packets

• Tracker: track the distribution of application level
protocols (HTTP, P2P, Skype ...)

9

System Design

10

Architecture of SAND

One coordinator and multiple workers.
Each worker can be seen as an operator.

11

Coordinator

Coordinator is responsible for

• managing worker executions

• detecting worker failures

• relaying control messages among workers

• monitoring performance statistics

Zookeeper cluster provides fault tolerance and reliable
coordination service.

12

Worker
Contain 3 types of processes:

• The dispatcher decodes streams and distributes them to
multiple analyzers

• Each analyzer independently processes the assigned
streams

• The collector aggregates the intermediate results from all
analyzers

The container daemon

• spawns or stops the processes

• communicates with the coordinator
13

Communication Channels

Efficient communication channels:

• Intra-worker: a lock-free shared memory ring buffer

• Inter-worker: ZeroMQ, a socket library optimized for
clustered products

14

Fault-Tolerance

15

Previous Fault-Tolerance Schemes

1. Replication: each operator has a replica
operator [Hwang’05,Shah’04,Balazinska’08]

I Data streams are processed twice by two identical nodes
I Synchronization protocols ensures exact ordering of

events in both nodes
I On failure, the system switches over to the replica nodes

2x hardware cost.
16

Previous Fault-Tolerance Schemes

2. Upstream backup with checkpoint [Fernandez’03,Gu’09]:
I Each node maintains backup of the forwarded events

since last checkpoint
I On failure, upstream nodes replay the backup events

serially to the failover node to recreate the state

Less hardware cost. It’s hard to provide correct results after
recovery.

17

Why is it hard?

• Stateful continuous operators tightly integrate
“computation” with “mutable state”

• Makes it harder to define clear boundaries when
computation and state can be moved around

18

Checkpointing

• Need to coordinate checkpointing operation on each
worker

• 1985: Chandy-Lamport invented an asynchronous
snapshot algorithm for distributed systems

• A variant algorithm was implemented within SAND

19

Checkpointing Protocol

• Coordinator initiates a global checkpoint by sending
markers to all source workers

• For each worker w ,
I on receiving a data event E from worker u

I if marker from u has arrived, w buffers E
I else w processes E normally

I on receiving a marker from worker u
I if all markers have arrived, w starts checkpointing

operation

20

Checkpointing Operation

On each worker:

• When a checkpoint starts, the worker creates child
processes using fork

• The parent processes then resume with the normal
processing

• The child processes write the internal state to HDFS,
which performs replication for data reliability

21

Output Buffer

Buffer output events for recovery:

• Each worker records output data events in its output
buffer, so as to replay output events during failure
recovery

• When global checkpoint c is finished, data in output
buffers before checkpoint c can be deleted

22

Failure Recovery

F

a

b

c

d

e

f

g

h

DF

PF

• F : failed workers

• DF : downstream workers of F

• F ∪ DF : rolled back to the most recent checkpoint c

• PF : the upstream workers of F ∪ DF

• Workers in PF replay output events after checkpoint c

23

Evaluation

24

Experiment 1

• Testbed: one quad-core machine with 4GB RAM

• Dataset: packet header trace; 331 million packets
accounting for 143GB of traffic

• Application: packet counter

System Packets/s Payload Rate Header Rate

Storm 260K 840Mb/s 81.15Mb/s
Blockmon 2.7M 8.4Gb/s 844.9Mb/s

SAND 9.6M 31.4Gb/s 3031.7Mb/s

• 3.7X and 37.4X compared to Blockmon [Simoncelli’13]
and Storm

25

Experiment 2

• Testbed: three 16-core machines with 94GB RAM

• Dataset: a 2-hour network trace (32GB) collected from a
commercial GPRS core network in China in 2013

• Application: AppTracker

26

Experiment 2

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12

T
h
ro

u
g
h
p
u
t

(M
b
/s

)

Number of Analyzers

Interval 2s
Interval 5s

Interval 10s
No Fault-Tolerance

• Scale out by running parallel workers on multiple servers

• Negligible overheads

27

Experiment 3

0

200

400

600

800

1000

0 10 20 30 40 50 60

T
hr

ou
gh

pu
t

(M
b/

s)

Time (seconds)

Interval 5s
Interval 10s

t1 t2 t3 t4 t5

• Recover in order of seconds

• Recovery time is in proportion to checkpointing interval

28

Conclusion

• Present a new distributed stream processing system for
network analytics

• Propose a novel checkpointing protocol that provides
reliable fault tolerance for stream processing systems

• SAND can operate at core routers level and can recover
from failure in order of seconds

29

Thank you!
Q & A

30

	Introduction
	Background
	System Design
	Fault-Tolerance
	Evaluation

