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Motivation

Network traffic arrives in a streaming fashion, and should be
processed in real-time. For example,

1. Network traffic classification

2. Anomaly detection

3. Policy and charging control in cellular networks

4. Recommendations based on user behaviors
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Challenges

1. A stream processing system must sustain high-speed
network traffic in cellular core networks

I existing systems: S4 [Neumeyer’10], Storm 1 ...
I implemented in Java: heavy processing overheads
I cannot sustain high-speed network traffic

2. For critical applications, it is necessary to provide
correct results after failure recovery

I high hardware cost
I cannot provide “correct results” after failure recovery
I at-least-once vs. exactly-once

1http://storm.incubator.apache.org/
4

http://storm.incubator.apache.org/


Challenges

1. A stream processing system must sustain high-speed
network traffic in cellular core networks

I existing systems: S4 [Neumeyer’10], Storm 1 ...
I implemented in Java: heavy processing overheads
I cannot sustain high-speed network traffic

2. For critical applications, it is necessary to provide
correct results after failure recovery

I high hardware cost
I cannot provide “correct results” after failure recovery
I at-least-once vs. exactly-once

1http://storm.incubator.apache.org/
4

http://storm.incubator.apache.org/


Contributions

Design and implement SAND in C++:

• high performance on network traffic

• a new fault tolerance scheme
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Background
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Background

Continuous operator model:

• Each node runs an operator with in-memory mutable state

• For each input event, state is updated and new events are
sent out

Mutable state is lost if node fails.
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Example: AppTracker

• AppTracker: traffic classification for cellular network
traffic

• Output traffic distribution in real-time:

Application Distribution

HTTP 15.60%
Sina Weibo 4.13%

QQ 2.56%
DNS 2.34%

HTTP in QQ 2.17%
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Example: AppTracker

Under the continuous operator model:

• Spout: capture packets from cellular network

• Decoder: extract IP packets from raw packets

• DPI-Engine: perform deep packet inspection on packets

• Tracker: track the distribution of application level
protocols (HTTP, P2P, Skype ...)
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System Design

10



Architecture of SAND

One coordinator and multiple workers.
Each worker can be seen as an operator.
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Coordinator

Coordinator is responsible for

• managing worker executions

• detecting worker failures

• relaying control messages among workers

• monitoring performance statistics

Zookeeper cluster provides fault tolerance and reliable
coordination service.
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Worker
Contain 3 types of processes:

• The dispatcher decodes streams and distributes them to
multiple analyzers

• Each analyzer independently processes the assigned
streams

• The collector aggregates the intermediate results from all
analyzers

The container daemon

• spawns or stops the processes

• communicates with the coordinator
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Communication Channels

Efficient communication channels:

• Intra-worker: a lock-free shared memory ring buffer

• Inter-worker: ZeroMQ, a socket library optimized for
clustered products
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Fault-Tolerance
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Previous Fault-Tolerance Schemes

1. Replication: each operator has a replica
operator [Hwang’05,Shah’04,Balazinska’08]

I Data streams are processed twice by two identical nodes
I Synchronization protocols ensures exact ordering of

events in both nodes
I On failure, the system switches over to the replica nodes

2x hardware cost.
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Previous Fault-Tolerance Schemes

2. Upstream backup with checkpoint [Fernandez’03,Gu’09]:
I Each node maintains backup of the forwarded events

since last checkpoint
I On failure, upstream nodes replay the backup events

serially to the failover node to recreate the state

Less hardware cost. It’s hard to provide correct results after
recovery.
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Why is it hard?

• Stateful continuous operators tightly integrate
“computation” with “mutable state”

• Makes it harder to define clear boundaries when
computation and state can be moved around
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Checkpointing

• Need to coordinate checkpointing operation on each
worker

• 1985: Chandy-Lamport invented an asynchronous
snapshot algorithm for distributed systems

• A variant algorithm was implemented within SAND
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Checkpointing Protocol

• Coordinator initiates a global checkpoint by sending
markers to all source workers

• For each worker w ,
I on receiving a data event E from worker u

I if marker from u has arrived, w buffers E
I else w processes E normally

I on receiving a marker from worker u
I if all markers have arrived, w starts checkpointing

operation
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Checkpointing Operation

On each worker:

• When a checkpoint starts, the worker creates child
processes using fork

• The parent processes then resume with the normal
processing

• The child processes write the internal state to HDFS,
which performs replication for data reliability
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Output Buffer

Buffer output events for recovery:

• Each worker records output data events in its output
buffer, so as to replay output events during failure
recovery

• When global checkpoint c is finished, data in output
buffers before checkpoint c can be deleted
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Failure Recovery

F
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• F : failed workers

• DF : downstream workers of F

• F ∪ DF : rolled back to the most recent checkpoint c

• PF : the upstream workers of F ∪ DF

• Workers in PF replay output events after checkpoint c
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Evaluation
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Experiment 1

• Testbed: one quad-core machine with 4GB RAM

• Dataset: packet header trace; 331 million packets
accounting for 143GB of traffic

• Application: packet counter

System Packets/s Payload Rate Header Rate

Storm 260K 840Mb/s 81.15Mb/s
Blockmon 2.7M 8.4Gb/s 844.9Mb/s

SAND 9.6M 31.4Gb/s 3031.7Mb/s

• 3.7X and 37.4X compared to Blockmon [Simoncelli’13]
and Storm
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Experiment 2

• Testbed: three 16-core machines with 94GB RAM

• Dataset: a 2-hour network trace (32GB) collected from a
commercial GPRS core network in China in 2013

• Application: AppTracker
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Experiment 2
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• Scale out by running parallel workers on multiple servers

• Negligible overheads
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Experiment 3
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• Recover in order of seconds

• Recovery time is in proportion to checkpointing interval
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Conclusion

• Present a new distributed stream processing system for
network analytics

• Propose a novel checkpointing protocol that provides
reliable fault tolerance for stream processing systems

• SAND can operate at core routers level and can recover
from failure in order of seconds
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Thank you!
Q & A
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